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Measurements were carried out on the density chaipge) in a pure fluid £He) after a small step change
in the temperature of its container. The sample fluid was kept at constant average dégsitied in the
coexisting liquid and vapor phases below the critical temperafyreThe measurements were performed via
two superposed capacitive sensors. At temperatures far bElowthe equilibration in the liquid and vapor
phases, measured, respectively, by the top and bottom sensors, are found to proceed very diffefgpnily. As
approached, this difference diminishes; both the measured effective relaxation times level off and join
smoothly the data obtained aboVg. This coexisting liquid-vapor system éHe is simulated in one dimen-
sion. The results are presented for the spatial and temporal evolution of temperature and density in the fluid
following a temperature step of the enclosure. The proféigét) and their effective relaxation times are
compared with the experimental observations in both phases. There is a qualitative agreement between the
simulation and experiment foff(—T)/T,<10 3, and the quantitative differences further away frégare
discussed. The results of experimental measurements and of computer simulations along isotherms are dis-
cussed and lead to complementary information on the equilibration dynamics as a function of average density.
The asymptotic relaxation times obtained from simulation and from a formula based on the average thermal
diffusivity of the entire fluid sample are compared and discussed, both for normal gravity, and also under
microgravity conditions where both diverge &sis approached.S1063-651X96)02606-2

PACS numbe(s): 44.10+i, 05.70.Jk, 64.60-i, 66.10.Cb

I. INTRODUCTION time scales level off to a constant valueTasis approached
closer.

Assessing the equilibrium state of thermostatic properties During the same series of experiments, we conducted a
and the steady state of transport properties is particularlgimilar systematic investigation on the equilibration in the
important near the critical point of a pure fluid. Here the coexisting phases beloW,. In this paper we give an ac-
critical slowing down due to the diminishing thermal diffu- count of these results, some of which were presented in a
sivity becomes an important factor during relaxation betweerpreliminary form elsewherg9,10. A computer simulation
different states of equilibrium. It is important to understandon the temporal and the spatial evolution of this two-phase
the equilibration dynamics of the various thermodynamicsystem including the interface motion will be compared with
variables, such as temperature and density, in particular ithe experimental results.
connection with experimental investigations of critical phe- In Sec. Il of this paper, fluid equilibration, convection
nomena under microgravity conditiohs—>5]. effects, and equation of state near the liquid-vapor critical

In our first papef6] we described experiments and com- point are briefly reviewed, and in Sec. Ill, the equations that
puter simulations of density equilibration above the criticalform the basis for the computer simulation are presented.
point following a stepwise temperature change of the fluidThe instrumentation and the experimental procedures are re-
enclosure. The fluid selected for these studie¥He because viewed and described in Sec. IV. The results and discussions
of the past extensive studies in this laboratory of both statiéor equilibration along the critical isochore and also along
and transport propertie7,8]. The critical parameters are two isotherms—both from experiments and from
T.=3.310 K (T4, scalé or 3.316 K (T, scalg, simulation—are presented in Sec. V. In the Appendixes, the
p:.=0.0414 g/cn%, andP,=1.15x 1¢f dyn/cn?_ The results  spatial profile of equilibrium properties under the influence
of the earth-bound experiments withHe (gravitational ac-  of gravity is presented at several temperatures. The calcula-
celerationg,) [6] show the “piston effect” and the effect of tions of the specific heat and thermal diffusivity in the two-
stratification on the temporal density profijgz,t). The Pphase system is outlined. The numerical simulation proce-
computer simulations were also carried out at normal gravityglures are presented and the results of the computer
go and with the average densipyand initial and final tem- Simulation of the interface motion are shown.
peratures that are similar to the experiments. Hence a direct
comparison between experiments and predictions could be
made. There was good agreement in the shape and amplitude I1l. EQUILIBRATION NEAR THE CRITICAL POINT:
of the density changes, but the computed equilibration time A SHORT BACKGROUND
scale was found to diverge more strongly than the experi-
mental one a3 . was approached. For the reduced tempera-
turese=(T—T.)/T., where the stratification profile in the We consider the problem of the equilibration of a fluid at
cell becomes nonlinear, both the experimental and computegbnstant average densjy kept in a flat cell bounded by two

A. Single phase
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parallel horizontal plates, after a stepwise temperatur¢>tg_ For the complete calculation @f, see Ref[12].) We
changeAT of the enclosure. The plates are assumed to havgse the average of thg, obtained from the Dy), and

a very high thermal conductivity. Onuki and Ferrll] ex-  (c.), at the liquid and vapor boundaries.

plained the fast temperature equilibration observed in the QOnuki and Ferrel[11] have also given another character-

Single phase_ Of a fluid above the critical pOint. -H-ere theistic time, called crossover tim%_h for a two_phase sys-
expansion within the boundary layers due to the rising walkem,

temperature compresses the bulk fluid away from the wall,

transferring energy adiabatically from the boundary to inte- tg_1=t1. 3

rior. This so-called “piston effect” changes the temperature

at the fluid’s interior much faster than if the equilibration They predicted that the main inhomogeneity in the fluid sys-
was achieved only via thermal diffusion. In the absence otem is to exist near the interface forty_ ;. This is to be
gravity, the equilibration of the supercritical fluid will then compared with the spatial temperature profiles obtained from
show three regimes and will have two characteristic timesimulations(see Sec. Y Inserting the relevant thermody-

constants. namic parameters fotHe with Ap=0 andh=0.43 cm, we
(a) The first regime is due to the piston effect. Within a obtaintg=1.2, 0.10, and 0.012 s antgl =42, 37, and 26 s
time scale of for |e]=1x10"2, 1x10 3, and 2x10° 4.
h2
t=——— (1) [ll. NUMERICAL CALCULATION
4y°D+

In this paperP, T, andp are all scaled by their respective
the temperature inside the fluid is raised homogeneouslyalues at the critical point. In Ref6], we presented the
from T, to To+aAT with a~0.6 for *He [based on our governing equations in one dimension for the change of pres-
one-dimensional(1D) computer simulation for’He]. Here  sure, temperature, and density in a homogeneous fluid, where
D;=\/pCp is the thermal diffusivity\ is the conductivity, the flow velocity was neglected. The coupled equations were
and y=Cp/Cy is the ratio of specific heat at constant pres-solved numerically in the laboratory coordindtg. When a
sure over specific heat at constant volume. The piston effed¢haterial coordinat¢z’} is introduced 13] where
also raises sharply the density inside the fluid to a value Z
slightly aboyep and mtrodgces strong density gradients at Z,:f p(x,)dx, )
the two horizontal boundaries. 0

(b) In the intermediate regime, the temperature inhomo-
geneity decays with time as 2 and the density gradients at the same set of equations as[6] are transformed t914]
the boundaries propagate into the interior of the fluid with

decaying amplitude as time increases. ﬂ_ _E ﬂ) ﬁzii p)\ﬂ (5)
(c) In the diffusive regime, both temperature and density at |\ dP ) gt cpdz’ az' |’
throughout the fluid approach their equilibrium value with a
characteristic timer=(h?/47)D;' assuming y>1. For P(z',t)=P(z'=01)+gz. (6)
3He withAp=0 andh=0.43 cm ate=1%x10"2,t,=0.35s
and 7=460 s. The pressure change rate at fixdn Eq. (5) is independent
of z’ based on Eq(6), which can be calculated from
B. Coexisting phases
. o o M1 (dp| T |
We expect the piston effect to exist in a coexisting two- - —|=| —dz
. JP o P oT at
phase system. However, we are not certain at present on how o _ P @
the impedance to the pressure waves at the meniscus would at M1 [dp ,
influence the piston effect. Additionally we anticipate that 0 ? P sz

the magnitude of the piston effect in each phase depends
strongly on the respective thermodynamic coefficients in thgyare M is the total mass of the fluid. Equatién is derived

two phases. . _ using the differential equation of state
For the two coexisting phases, we use the expression
— d ap\ T [dp\ 9P
2 [ o |’ == —”) —+(—” = ®)
ty~ 7= | T~ 2) ot \dT) ot \dP]_ dt
4(D1)p [ (Cp)p

. _ . with the condition of total volume being constant. Boukari
forr] the_ chharacterls'qc dp|ston effe_ct tintg (mstefad Oftl)d et al. [14] have used Eqg5)—(7) to study the equilibration
where inhomogeneity due to gravityee Eq(56) of [11]and  1qcass of Xe near its critical point. We double-checked our

also Fig. 2 of[6]) is taken into account. Her€y is the  simulations published if6] with Egs.(5)—(7) and came out
spatial average of local,, over the whole fluid layer and \yith the same numerical results.

(D1)p and (Cp)p, are the properties at the fluid boundaries  |n this paper, we adapt Eq&)—(7) to a two-phase sys-
prior to the temperature chandgén the calculation ofc, we  tem, taking into account the mass transport across the menis-
do not include here the effect of the mass crossing the mesus. A report of computer simulation for the coexisting
niscus since it is mostly an effect that is significant atphases has been published by Straub and Eighelr for
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CO, with Ap=0 and fore=—1x10"2. In Sec. V, we shall z P = constant
discuss their results together with ours. )
~ In a two-phase system, the total volume is the sum of the P (D SN L. . ou—— TV,
liquid and vapor volumes, B > of
pbot(t) 4 ™ | e==============-4 Sensors
fzrln dz' mdz L, liquid
= = )
0 Pvap Jz,Piig ] AT
T To+
where the cross section is taken to be unity aQds the total T, AT
mass of the vapor phase and a function of time. Taking the T, —| . ti
time derivative of Eq(9) and using the differential equation t=0 1me
of state, Eq(8), we have
, FIG. 1. Top: schematic view of the flat cell for a fluid density
_ Mi &_P ﬂ 5 1 _ i ‘9Z_m measurement at two superposed locations. The dashed line repre-
P o p°\dT b ot Pvap  Pliq ot sents the meniscus. Bottom: temperature step sequkhoef the
2 h i ukhoef th
i SN m (10 cell versus timet.
p
—| dZ
fo ;Z(é’P)T the experimental cell to a departure from the flat surface

assumed in the calculations. Under near-zero gravity condi-
Here dz;/dt is the net mass flux across the meniscus andions, it is known that bubbles of vapor surrounded by liquid
together with latent heath it yields the total heat generated are formed belowl . [18].
at the meniscus,

97’ IV. EXPERIMENT

m
Q':_Ahﬁ' (11) Here we outline briefly the experimental methods and
procedures and refer for more detaild ®. The fluid sample
This heat source,>0) or sink (Q;<0) equals the differ- is enclosed in a flat cylindrical cell of oxygen-free high-
ence of heat currents from both sides of the meniscus. Thusonductivity copper, with a fluid layer height 6f=4.3 mm
we have and a diameter of 3.3 cm. The cell is shown schematically in
Fig. 1. Inside the cell are two rigidly supported horizontal
(12) capacitors separated by 2.1 mm center to center. Each ca-
pacitor has a gap of 0.13 mm between two perforated stain-
less steel blades of 0.13 mm thickness. It measures the di-

Equations(5), (10), and(12) give us a complete description €lectric constante* of the fluid, from which the local
of the equilibration process in the two-phase system. densitiespiop aNdp ot are obtained via the Clausius-Mossotti
To solve these equations, we assume that the phase traig/ation. Such determination has a resolution of
sition occurs only at the meniscus. At any other location inp/p=2x10"°, which is conditioned by the stability and
the fluid, especially within boundary layer, the liquid can be€lectronic noise of the detection system. During a series of
superheated and the vapor can be subcooled into the regidheasurements, the average denpity the cell is kept con-
between the coexistence and spinodal curves. The detailédant. A sequence of computer-programmed small tempera-

procedures to solve numerically EdS), (10), and(12) are  ture stepAT of the fluid enclosure is produced as shown in
given in Appendix B. Fig. 1. Once the density equilibrium following a previous

Although the flow velocity is implicitly included in Eqs. AT step has been reached within the experimental resolution,
(5) and (6) with the acceleration and viscous dissipation ne-the next step is implemented. Steps of opposite directions are
glected, our approach to solve these equations in one dimeHsed to test the reversibility of the process and to search for
sion prevents us from studying numerically the convectivePossible effects from convection. The temperature calibra-
flow motion since convection in one dimension is excludedtion and the location of . and of p. have been described in
Zappoli and co-worker§l6] have carried out a detailed nu- [6]-
merical calculation of mass transport in a square cavity filled When two phases coexist in the cell and stratification in
with supercritical CQ for e=3x 103, where they studied €ach phase is negligible, a change in temperature from the
the interplay of the piston effect, convective transport, andnitial T;=Tg to the final T{=To+AT temperature, with

thermal diffusion. A detailed discussion on the convectionT{>T;, will have the equilibrium value gf;, decreased and
effects will be given in Appendix A. that of p 5, increased. The equilibrium values of the density

In our model of thermal equilibration, the vapor phase inin each phase can be described by the equation of state of the
the top part of the cell is separated from the liquid by a flatcoexisting curvgCXC) for |e|=<0.1,
horizontal meniscus and for the sake of simplicity no account
is taken of effects from the surface tension. In reality, as the Apcxc=*Bel”. (13
critical point is approached, the surface tensior’lde van-
ishes just like in other classical fluids and confirms the preHere Ap=(p—p.)/p. is reduced density3=0.355 is the
dictions[17]. Under normal gravity, these effects cause theeffective critical exponent fofHe, and the signs of the am-
meniscus to curve upward near boundaries, which leads iplitude B (+ and —) are for the liquid and vapor. Close to

dz;, aT

N JaT
gt Ah|Phaz

N
liquid

vapor
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T., besides these changespify andp 4y, a stronger strati-
fication atT; will increasep;i; and decreasp, 4, at the loca-
tions away from the meniscus.

oo

‘{.:__._._.-...-.".-.-:-g.a_

Under equilibrium conditions, the vertical locatiap, of g
the meniscussee Fig. ] for a sample of an average reduced |
densityAp at a given|e| can be approximated by )

_ &
h__ar T
Zn==51— 77—/,
"2 |Apexdl

where Apcxc is calculated from Eq(13). Equation(14) is
derived from the mass conservation and assumes constant
density in each phada more accurate result can be obtained
from the cubic model when stratification in each phase is
included. Since|Apcxd decreases for a positivaT, the

a
meniscus ends up at a highéower) location than its initial {irg 0
one for a fluid of p>p. (p<p.). Given the coexistence ~
curve of Eq.(13), Eq. (14) expresses a well known fact that AE=12x107
the meniscus is located at,=h/2 for the fluid of p=p, -1 Ap=0
regardless of temperature, namely, the ‘“rectilinear diam-
eter” has a slope of zero, which is very nearly so the case for 0.0 ofz 0.4
SHe [7]. z/h
V. RESULTS AND DISCUSSION FIG. 2. Simulated spatial profiles ef- ¢, and Sp=p—p, for

. . . . . . the coexisting phases 8He on critical isochore versusat various
In this section we present first the numerical S|mulat|onstimes (in s after a temperature steple=1.2x10°5 at

for the fluid sample along the critical isochodp=0, fol-  __ ;152
lowing the temperature step of the fluid enclosure, and we
compare them with the experimental observations. Then wgrgssover time,_, of 4 s from the simulation, compared to
will use the same procedure for the fluid along isothermsy _,=42 s from Eq.(3). A large inhomogeneity in the fluid
i.e., with Ap#0, where the meniscus changes to a differenisystem exists throughout the liquid and vapor phases for
location at the final equilibrium temperature. These resultqztwl , which differs from the predictions of RefL1]. We
WI.|| bring interesting complementary information to that ob- pnote that thet,_, given by Eq.(3) is closely related to the
tained alongAp=0. time when the temperature in the vapor phase increases be-
yond its final equilibrium value due to the adiabatic heating.
A. Critical isochore This observation holds over the whole investigated tempera-
ture range under microgravity condition.
The large temperature gradients close to the cell bound-
For |e]|>5x 103, density stratification in each phase is aries lead to large density gradients there. The density dis-
negligible due to the small compressibility; but the large den-continuity at the meniscus produces another boundary layer
sity difference between the two-phases causes distinct reand accelerates the density equilibration towards its final
spective dynamics. Figure 2 shows spatial profiles of thesalue near the meniscus at times up to the order.ofhe
changesde(z,t) and dp(z,t) at several time instants for density transients at different locations in the cell can be
e=—1x10 2 and a step\e=AT/T,=1.2x10"°. understood in terms of the differential equation of state, Eq.
Because of the larger coefficient of T/9P)s in Eq. (5),  (8), and of the boundary layers diffusing into the interior of
the vapor phase is more efficient in converting energy adiaeach phase. During the time interval when the piston effect
batically than is the liquid phase. Thus a nearly uniform presdominates the temperature equilibration, the simulation
sure change in the cell results in a larger temperature changhows that the density rises quickly in the interior of both the
in the vapor phase than in the liquid. We can see from Fig. Zapor and liquid phasessp~+1x10"°) due to the com-
that the piston effect dominates the temperature equilibratiopression from the boundary layers. This is similar to that for
up to at least=10 s, fore=—1x10 2. Aftert>10s, and the homogeneous fluid &> T, . After the piston effect de-
starting from the cell boundaryz€0), the temperature in cays, the larger temperature gradients remaining in the liquid
the vapor phase passes beyond the final equilibrium valudeads to a larger density change there than in the vapor. This
This is the result of the adiabatic energy conversion due tdés clearly shown by comparing the density changes in both
the increasing pressure in the cell. A similar phenomenomhases at times, salys 100 and 200 s. Since the final density
has been predicted during the simulations Tor T, when  changes aredp,ft=x)=—dp jq(t=2), but the initial
stratification is stron6,14. density changes within the boundary layers have same sign,
Based on the derivation of E¢3) by Onuki and Ferrell the expansion of the boundary layers affects differently the
[11], we equal the temperature difference between thelensity transient in the two phases, making the density tran-
middle of the liquid and vapor phases to that between thaient in the liquid phase appear faster than in the vapor
meniscus and its final equilibrium value. This gives us thephase.

1. Nonstratified coexisting phases
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10* EIR .
3 s
S AE=12x%x107° - 107 4
— o — 0.733 -
0.4+ Ap=0 0.9 - Q8~
|
I &
0.0 T T T T . 106 4
A—p =0 T
Teff -
642.8 107 4 i
625.3 | Y A T T T T
78.0 0 500 1000 1500 2000 2500

I 1(s)
[8p(e)] = 1.1x107*
L FIG. 4. Semilogarithmic plot ofp(t) — p(«)| taken at the two

sensor locationszZ{h=0.267 and 0.733) and the two locations close

0 4(')0 ' 8(')0 12'00 ' 16|00 to cell boundaries forAe=1.2x10"° at e=—1x10"2. The
t(s) double-arrowed line marks the limit of experimental resolution in
op.

FIG. 3. Simulated temporal profiles dfe=e— ¢, and Sp for
the coexisting phases ofHe on the critical isochore at the two
sensor locationsz{h=0.267 and 0.733) and two locations close to

the cell boundaries, following a temperature step=1.2x 10" ° at
e 102 gatemp S5p(2,t) = p(2,50) + A(Z)exp — t/ 7) (15)

ing the long-time density transient with a single exponential
function

) ] and the values were found to be quite reproducible. This
In Fig. 3 we present the temporal profiles of the temperareversibility of the entire profile appears to exclude convec-
ture changese and Sp at the four locations as indicated in

the graph, of which the second and third are the density
sensor locations in our experimental setup. When the tem- 1

perature in the middle reaches Q'B, the time is found to be . l T
1.7 s, which is to be compared with= 1.2 s calculated from = -~ )
Eqg. (2). Figure 3 shows that in the vapor phase, after the 14 L
initial sharp changes due to the piston effect, #&t) )
curves for botte/h=0.1 and 0.267 tend towards the equilib-
rium value in a nearly exponential fashion. By contrast, in | S 692 s
the liquid phase the transientp(t) for z7h=0.733 and even &

more so for z/h=09 pass beyond the value & 04 Wtpp ot =
Sp()=1.1x10* before slowly approaching the limiting &

value from below. The “undershoot” beyond the equilib- 1 Vapor 655 s 706 s
rium value is more strikingly shown in Fig. 4 when the simu- )

. . . . . 14 £=-1x10
lated |p(t) — p()| is plotted vs time on a semilogarithmic Ac= 1.9x10°
scale. This figure also shows that there exists indeed a spa- 1 Ap=0 L
tially independent asymptotic relaxation time with-647 s. Liquid 53
In this paper, we use the word “undershootbr “over- o 55s /
shoot”) to describe a transient passage of the temperature or &
densitybelow (or above its final equilibrium value. Z§ O - — B

The simulation results obtained by Straub and Ei¢aét =
for CO, at e=1x10 2 are consistent with those presented | 355
for ®He in Figs. 2 and 3. They show in particular similar 14
amplitudes for the initial changes in the respective temporal |
profiles of bothp,,{(t) andpjig(t). 0 10 ; 15 20

In Fig. 5 the corresponding experimental observation se- t(10°)
guence is shown, where both positive and negative tempera-
ture steps of equal magnitude were taken. It can be clearly FiG. 5. Experimental observations of the temperature step se-
seen that the temporal density profiles are entirely reversiblguence and the density temporal profiles in the liquid and vapor
upon changing the sign dfe. The effective relaxation times phases offHe for e= —1x 1072, Ae=+1.2x10"°, andAp=0.
indicated for each relaxation were obtained by approximatThe numbers tagged on the curves represgpt

wn
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a) prediction b) experiment 104 AD=0
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FIG. 6. Density temporal profiles from the same temperature

step sequence as in Fig. 5, but expanded in time, and compared with FIG. 7. Ratiodppe/ 5p() in the vapor phase from experiments
corresponding computer simulations. The numbers tagged on tha&s a function of reduced temperature and Agr=0. The inserted
curves representy; . schematic temporal profile defines the amplitudesspfe of the

first peak(No. 1 open squarg¢sand of the minimum(No. 2 solid
tion effects at these small steps/é. The expanded portion circles. For |e|<2x 10 2 the difference between the two ampli-
of the early transient for a positive temperature step in Fig. Sudes cannot be resolved. The simulation does not show the mini-
is shown in Fig. 6 and is compared with the simulated tranmum but a plateau with a small slope. The dashed line is taken at
sient of the same temperature step change. Several aspettts foot of the plateau.
should be noted.

First, there is fair qualitative agreement between simulagence of the ratiodp,e/ Sp() in the vapor phase, as ob-
tion and experiment in that they both show the striking dif-tained from experiments and simulations. The straight line in
ferences between the liquid and vapor phases. WhefdBl. the graph is a fit ofa+b log;(|€]) to the data of No. 2
is used to analyze the simulated transients for the remaininggfined in the graph with=0.35, a value that happens to be
~ 1/3 of the total density change and in the same way as fog|gse to the effective critical exponer. We note that
the experiments, the effective relaxation times are found t%ppelﬁp(oo)zo for || <2x 1074, The ratio from the simu-
be 7¢q(liq) = 78 s andreg(vap) = 625 s, which compares |51i0n is much smaller than in the experiments for

with the experimental valueg.;=55 and 700 s. The differ- €|>5x 1074, Here the chang@p.. is that of the plateau
ence between the liquid and vapor phases is understood frof}ier the sharp initial rise shown E)n Fig. 6.

the simulation as the consequencegipthe stronger piston
effect in the vapor phase ar{id) the undershoot caused by
the expanding boundary layer of the liquid phase. As one can
see from Fig. 4, the attempt to measure the asymptotic relax- In Fig. 8 the experimental observations after two consecu-
ation time from the liquid density transient is limited by the tive A e steps at=—1x 103 are shown and the profiles are
experimental resolutiofmarked by the double-arrowed hori- again found to be quite reversible upon a sign change of
zontal line: what the experiment can measure is effectivelyA e. The shapes in the late equilibration stage of the observed
the portion of the transient that precedes the undershoot ardénsity transients in both the liquid and vapor phases, of
leads to a much shorter time than the asymptotic relaxationpposite sign, have become more similar, resulting in more
time 7. On the other handr can be better approximated comparable effective relaxation times. The experimental ob-
from the measurement in the vapor phase, even though treervations are compared with the simulation results for
finite instrument resolution leads to an effective relaxationAe>0. As can be seen from Fig. 8, the simulation takes a
time larger than the asymptotic one. much longer time to approach equilibrium than the experi-

Second, there are systematic differences at short timement does. In the simulation, the amplitude ratio of the sharp
between simulation and experiment. In the vapor phase, thigitial rise dp to the total density changép, () in the
experiment shows a considerably larger initial sharp rise thamapor has half the size of that fer=—1x10"2. By con-
does the simulation. In the liquid phase, the experiment doesast, this amplitude ratio for the experimeni@p, {t) is
not show the predicted initial sharp rise and maximum. considerably smaller than at larged, as shown in Fig. 7.

As |€| is increased, the observed density profiigg(t) As |e| becomes smaller thanx110"3, the simulation
show a systematic trend whereby the relative amplitude ofhows quite different spatial profiles from those at
the sharp increasép (for “piston effect”) immediately —e=—1X 102 at various times: the amplitude ratio of the
after the stepAe becomes larger and eventually nearly temperature overshoot in the vapor phase over the tempera-
equals the total chang8p(e). The computer simulation re- ture inhomogeneity in the liquid phase is much larger;
sults for the profilep,{t) and forp4(t), by contrast, do not smaller diffusivity reduces the role that the expanding
show a substantial temperature dependence foboundary layers play, thus there is no visible undershoot in
|e|>1x10"2. Figure 7 illustrates the temperature depen-the temporal evolution of the density in the liquid phase; the

2. Stratified coexisting phases
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of the relaxation time we define agby using Eq(16) with

a) prediction b) experiment T .

w 6 . the D+ replaced with its spatial average when a strong den-
‘g e=-1x10"? sity stratification is present and the result is shown in Fig. 9.
— 0+ — Iy — We note that this estimate is in good agreement with7the

o 24 a L from simulations when the stratification is small and both
o exhibit the leveling off of the asymptotic relaxation as
oS 2812 | 292 s 266 s . , .
S s " i approached . in presence of the Earth’s gravity.
~ ol For the two-phase system, we use again a spatial average

0 of Dt in Eqg. (16) with A=4 (implying y>1) as an estimate

é 909 s for 7 of the overall equilibration. The result is also shown as
3 [\ 199 23s | TestiN Fig. 9. In contrast to the result of the single phase, the
= 5] L n estimation based on E@16) is significantly lower than the

— | , , | | 7 obtained from the simulation, by a factor varying from 1.7
0 4 8 12 0 1 2 3 4 at|e|=1x10°to 5.0 at|e| =8x 102 for g=g,, as shown
t(10%) by the solid line in Fig. 10. One possible explanation for this
discrepancy might be that in the two-phase system, the vol-
ume of each phase can change at the expense of the other
while their total volume remains constant. This is visualized
irn Fig. 18 of Appendix C, which shows the meniscus motion
a%ter the temperature step change. Since equilibration does
not proceed under conditions of strictly constant volume for

density change at equilibrium shows the effect of large strati€ach phase, we anticipate a change of the faetorEq. (16)
fication change. The experimental observations of the derfTOM its value of 4. o _ _

sity transients after two consecutiveAT steps show the ~ The main reason for the variation of 7e with |€| is the
profiles to be quite reversible, which seems to exclude angversimplification of using the average of the loBaf in the
obvious convection effects. Here the contribution from thecalculation ofres. For|e|>1x10"3, /7.4 is larger than 4
sharp initial response to the total density change is no longdsecause of the approximation ¢ 1. A proper accounting
observed in the vapor phase and the density temporal profilef y will raise 7.g, hence lowerr/ 7o This effect was not
for the sensors at the location of the liquid and vapor phaseisicluded in our calculation ofg. For|e|<1x10~ 3, where

FIG. 8. Density temporal profiles in the liquid and the vapor
phases after temperature stedse|=6x10"° at e=—1x10"3
and forAp=0. The computer simulation faxe>0 is shown on the
left-hand side. The observed data after two consecutive temperatu
steps in opposite directions are on the right-hand side.

are closely the same. one can usey>1 to a very good approximationy 7 . be-
comes smaller than 4 because of the spatial averad;of
3. Time constants and data discussion fails to describe qualitatively the effect of stratification on

In Fig. 9 we present the predicted relaxation times. Be_the equilibration. When a simulation under microgravity

cause it is interesting to compare the results for the regimes
of single phase and coexisting phases, we have also pre- . . ! L s ) !
sented in the same figure the results obtained previously for 10° i
€>0 [6]. Here we discuss three types of relaxation times. i Ap=0 SR T 7 (Hg)

(a) The asymptotic time. This time is obtained by fitting ] i
the simulated p—p..| over the available straight portion as
shown in the semilogarithmic plot of Fig. 4. For equilibration
under normal gravity, both curves coming from opposite di-
rections €<0 ande>0) join smoothly aff .. Under micro-
gravity conditions, both curves diverge @&t (dot-dashed
lines).

(b) The estimated asymptotic timgg,. The purpose of
introducing this time is to obtain a physical interpretation for
and a check on the from the simulations. In a single-phase
fluid under conditions of constapt and for timest> y?t,,
Onuki and Ferrel[11] predict an exponential decay of the
temperature transient with a relaxation time given by

Relaxation times (s)

TetftOP)
Tefi(bot)

hZ

" A7Dy’

(16)

FIG. 9. Computed relaxation times versus the reduced tempera-
) ) . ture, both below and abovE.. The symbols are obtained from
whereA is a function ofy varying fromA=4 for y>1 10 the density transients at the top and bottom sensors as explained in
A=1 for y=1 [19]. If the equilibrium is approached under the text. The solid lines are the asymptotic timesbtained from
the condition of constant pressure instead of constant avethe simulations. The dashed lines are the relaxation tirggfrom
age density, the coefficient would #e=1 independent of Eq.(16). The above are under normal gravity. The dot-dashed lines

the value ofy. We have obtained foF >T, a good estimate are r under a reduced gravity a@f=gox 10 ©.
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10 10° 10* 10°
lel
FIG. 10. Ratio of the relaxation times 7. along the critical &
isochore, wherer is from simulations and-; is calculated as de-
scribed in the text. Solid circles, under normal gragty go; open FIG. 11. Relaxation times,; determined from the top and bot-
squares, under microgravity conditions wgkr gox 10" °. tom sensors versus the reduced temperature, both below and above

. ) . ) T.. Below T, the symbols represent the relaxation times in the
conditions is performed and bothand . diverge, the ratio  vapor (squares and liquid (solid circles: Larger symbols, experi-
7/ Tes; tends to 4.0 age|—0 (dot-dashed line with open ments; smaller symbols, simulations. The various lifesid and
squares in Fig. 10 dot-dasheflare guides to the eye.

(c) The effective relaxation timey at the location of the o _ ] )

top (vapor) and bottom (liquid) sensoShown also in Fig. 9 stratification. In the S|mulfit|0n,reﬁ_(top) is sh(_)rter than
are the values ofr. at the sensor locations, obtained by Ter(Pottom for T>T.. This is explained as the influence of
fitting Eq. (15) to the simulated density transients over thethe temperature overshoot on the density transient near the
last 1/3 of the total density change. As we have seen fron§ell top[6]. On the other hand, fof<T,, the influence in
Figs. 2 and 4, the; from the liquid phase is affected by the the |IC]UId. phqse of the diffusing poundary layer on the den-
density undershoot that is caused by the diffusion of theSity transientis stronger than the influence of the temperature
boundary layer. Therefore it is purely accidental thatovershoot in the vapor phase. Therefatg(bottom for the
rer(liquid) coincides withreg 0ver a wide temperature range. liquid is shorter thanreg(top) for the vapor. However, by
We note that thero¢(vapop follows the asymptotic relax- contrast, the measurements show thattop) is shorter than

ation time 7 closely for|e|>5x10"2, Terr(bOttom for both T>T, and T<T.
In Fig. 11 the effective relaxation times obtained from the
experiment are presented both below and abyér com- B. Isotherms

parison, together with the simulated data. In contrast to the We have discussed the possible reasons for the qualitative
single-phase regime abovg, the experiments indicate two disagreement in relaxation times between the simulation and
time scales, for the liquid and the vapor, respectively, whichexperimental observation along the critical isochore. The
join neare=—1x10"2 asT, is approached. One of the time spatial profiles ofp(z,t) and e(z,t) when equilibrium is ap-
scales diverges with decreasifg, with a similar power proached and the heat generation absorption at the me-
exponent as in the single phase, while the other decreasasiscus are two key factors. The simulation along isotherm
Both times then increase and level off [a$ tends to zero reveals more about these two factors since the meniscus lo-
and join those from the single phaseTat cation and the heat generated or absorbed at the meniscus are
Both the rz(vapop and 7.(liquid) obtained from the functions of the fluid average density.
simulations increase &%, is approached. Therefore a signifi- ~ Here we present two extreme situations. In the first one at
cant discrepancy exists between experiments and simulatiors= —1x 102, there is no stratification within each phase,
below T, particularly in the regimge|>1x10"%, where although there is a phase separation under the Earth’s grav-
stratification is small. We note that it is in this regime thatity. The two phases coexist in the cell throughout the inves-
Terr and the ratiodp,e/ Sp.. in the vapor phase show strong tigated region —0.17<Ap<0.09. In the second, at
differences from simulations and we suspect that their behawe= —3x 104, stratification is important within both phases
ior must be correlated. Both these quantities show a markednd also the coexistence regime exists only|fop[<0.08.
decrease with decreasing|. Hence the situation belo@,  Here we will see dramatic changes occurring in both the
differs appreciably from that abovi., where the computed spatial and temporal density profiles—and therefore in the
and observed density profiles were in good agreement, exelaxation times—when meniscus and latent heat are re-
cept for the time scales, and there was qualitative agreementoved. Along both isotherms, discontinuities or sharp ex-
in the trend ofrek With €. trema inT are predicted and observed at a sensor when the
There is another discrepancy between the simulation antheniscus approaches and leaves the location of this sensor as
measurement om in the region of smalle| with large  Ap varies.
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FIG. 13. Computed relaxation times from the simulations along
the isotherm ofe= —1Xx10"2. The symbols+ and X represent
T Obtained from the simulated density transients at the top and
bottom sensors as explained in the text. The solid circles represent
the asymptotic timer obtained from the simulations. Open circles
represent the relaxation times, from Eq.(16) under normal grav-
: ity. Along this isotherm over the rangé p|<0.16, the fluid has
0.0 0.2 0.4 0.6 0.8 1.0 r

z/h always two coexisting phases.

FIG. 12. Simulated spatial profiles af- €., and 5p at various ~ Simplified estimation of.g using spatial average @fy, just
times (in s). The simulations are made along an isotherm ofas it was the case for the calculation of the ratio along the
e=—1x10 2 with a temperature stefpe=1X 10 * for two aver-  critical isochore.
age densitied p=—0.10 andAp=0.10. The computed effective relaxation times obtained from

. 5 the density transients at the two sensor locations are also
1. The isotherm ofe=—1x 10

shown in Fig. 13. Fo\p>—0.12 the bottom sensor mea-
In Fig. 12 we present the simulated spatial profiles ofsures the density of the liquid phase and &y<0.12 the

€—€,, and dp at various time instants for two average re-top one measures the density of the vapor phase. However,
duced densitied p=—0.10 and 0.10. The computations are the dependence of the on theAp for both the liquid and
made ate=—1Xx10 2 with a stepAe=1x10 *. Both the vapor phases deviates dramatically from thatrofWe ex-
temperature and density spatial profiles are strongly affecteglain the behavior ofr.x(liquid) as follows. As theAp in-
by the meniscus location. Fadxp=—0.10, where the vol- creases, the magnitude of density undershoat lat=0.733
ume ratio of the vapor phase to that of the liquid phase islecreasethis is related to the weaker overall piston effect
larger than forAp=+0.10, the piston effect is stronger. and the density transient at this location follows better
This results in a faster change of the average temperature ftihe temperature transient, resulting in the increased
Ap=—0.10(clearly seen at=50 9 and a stronger tempera- 7.(bottom.
ture overshoot in the vapor phase, as compared to the results The temporal density profiles obtained experimentally and
for Ap=+0.10. from the computer simulation along the isotherm
The shapes of the density transiefit®t shown for the ~ e=—1x10"2 resemble those presented in Fig. 6. Again the
two average densities are also strongly affected by the mesbserved amplitude ratiép,./dp.. in the vapor phase is
niscus location and the difference in the magnitudes of theonsiderably larger than in the simulations, which is of the
piston effect. A strong density undershoot appears in the ligerder of 0.1. This experimental ratio is found to vary with
uid phase forAp=—0.10 but not forAp=0.10. Further Ap as shown in Fig. 14.

analysis of the density transients, made in the same way as in In Fig. 15 we show(a) the meniscus location calculated
Fig. 4, shows that an asymptotic relaxation timexists for

1a from Eq. (14), based on the assumed symmetric location of
the entire fluid withAp #0.

the sensors in the cellb) the densities measured by the two
The computed relaxation times from the simulationscapacitive sensors, angt) the effective relaxation times

along the isotherm o= —1x10"2 are shown in Fig. 13. measured from the experimental density transients vs the
The variation of the asymptotic relaxation timesbtained Ap ate=—1x10 2. The bottom sensor measures the liquid

from the simulations versudp is larger than that ofreg;. density for Ap>—0.072 and the vapor density for
The ratio 7/7. varies from 5 atAp=-0.12 to 2.8 at Ap<—0.112. The width of the transition from the liquid to
Ap=0.14. We believe this variation to result from the over-the vapor is caused by the finite sampling width38 mmn)
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tudes of 5p,e defines the symbols for the first pe@io. 1, open Ap

squaresand the minimum(No. 2, solid circles
FIG. 16. Computed relaxation times from the simulations along

of the capacitive sensor when the meniscus moves across ftie isotherm ofe= —3x 10 4. The two phases coexist in the cell

which is indicated by the two dashed lines in grdph The  over|Ap[<0.078. ForAp>—0.04 the bottom sensor samples the

discrepancy between the predicted and measured densiiguid phase. The same holds for the top sensakat-0.04. The

transitions versud p is explained if the location of the pair Symbols + and X are 7 obtained from the simulated density

of the sensors is not exactly symmetric in the cell, but movedransients at the top and bottom sensors as explained in the text.

upward by 0.2 mm. It is interesting that the transition width Splid circles, a§ymptotic time obtained from the simulation.s, open

of the measured effective relaxation time is larger than tha$ircles, relaxation timeres from Eq. (16) under normal gravity.

from the equilibrium density measurement. We interpret thisD

observation with the help from Fig. 12. Besides the cell oundary layers, there are also the interface layers within
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which the density changes in the opposite directions in the
liquid and vapor phases. Even though the physical location
of the meniscus is outside the sensor, the effect of the inter-
face boundary can still be felt by the sensor via the interface
layers. Therefore the “dynamic response width” is larger
than the “static transition width.” FOA p>—0.06, ther

in both phases increases with increasing and their ratio
remains nearly constant. The behavior of #ag(liquid) from

the experiment agrees with that from the simulatisee Fig.

13). However, the experimentalx(vapop increases with the
increasingAp for —0.12<Ap<0.08, while the simulated
Terr(Vapon varies in the opposite direction in the same range.
Here again, experiment and prediction do not agree, as was
found along the critical isochore fdre|>10"3. We note
again that both the experimentat,s and the ratio
Sppel Sp- In the vapor phase decrease Ap decreases.
Hence there must be a correlation between the large ratio
dppel op and the longr ¢ from experiments, both quite
different from the predictions, for the isotherm of
e=—1x102 as well as for the critical isochore as was
described before.

2. The isotherm ofe=—3x 1074
In Fig. 16 we show the computed relaxation times from

FIG. 15. (a) Meniscus location, calculated from Eql4), versus

N H . _ _4 . .
Ap. The dashed lines indicate the physical location of the bottonimulations fore=—3x10"". Here the meniscus disappears
sensor with the distance between the dashed lines representing tAk the top and bottom boundaries at aba\p[=0.078. The

finite sampling width of the sensofb) Reduced density measured discontinuity both in there and ther at this value ofAp is
by the two sensors vAp. (c) The effective relaxation times,g an important indication that the existence of the meniscus is

along the isotherm oé= —1x 102, determined from the top and the bottleneck of the equilibration. In the absence of a me-
bottom sensors versudp. Solid circles, bottom sensor; open hiscus in the cell, the equilibration proceeds much faster than
squares, top sensor. in its presence and the asymptoticagrees well withrgg
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tion. The agreement in the overall behavior @f vs Ap
between the experimental and the simulated results along
this isotherm is encouraging.
otop e bot Finally, we note the good agreement between the pre-
RRERIIRAL L L B dicted and observed meniscus positions in Fig€al@nd
Ap ®) . - 17(b). The disappearance of the meniscus|fiop]>0.078 is
0.1 s @ ® 0 00oooooonod? L marked by a departure @p from a near constant value, as
expected.

0

L b
1<
0.1

VI. SUMMARY

In this paper we have presented a theoretical and an ex-
L perimental study of the local density chang(z,t) inside a
s two-phase pure fluid at constant volume in the region below
the liquid-vapor critical point. This study was carried out
with 3He and the experiment was performed in a flat cylin-
drical cell with two superposed density sensors. In most
| | T | T cases, the top and the bottom sensors measure, respectively,
015 010 -005_ 000 0.05 the vapor and liquid density. The experiments produce an
Ap effective relaxation time. by approximating the tails of the
density transients by a simple exponential decay. Computer
_FIG. 17.(a) Meniscus location, calculated from Eql4), versus  simulations predict the spatial and temporal profiles of
Ap a!ong the i;otherm: —3x10°% The dasheq lines indicate the 5(z,t), which lead to the prediction of. and also of the
physical locations of the sensors with the distance between thgsymptotic relaxation time that is not often observable be-
dashed _Iines represent?ng tr_u_a finite sarr_lpling width_ of the sensorg5 . se of the finite signal-to-noise ratio of the apparatus.
The region of 6<z,,<1 identifies the regime of coexisting phases. gy,gies were performed along the critical isochore and two
(b) Experimental reduced density measured by the two Sensors \§warms. The principal results are as follows.
Ap. () Observed effective relaxation timegy determined from =y Tha simylations show that there exists an asymptotic
the top and bottom sensors versys. Solid circles, bottom sensor; . . . .
open squares, top sensor. The solid and dashed lines are guidesr%axatlon timer for the entire tyvo-phase_ coexisting system
the eyes. even th_ough the therr_nodynamlc properties of each phase are
quite different. Thisr is larger by a factor of the order of 4
than the estimated time.g based on the average thermal
from Eq. (16) with A=4, which is for equilibration at con- diffusivity taken over the entire fluid sample and derived
stant total volume. In the presence of the meniscuss  under the assumption of constant volume. Our study of the
larger thanrey by a factor of about 4, as if equilibration ratio 7/ 7. along the critical isochore and along isotherms,
proceeded at constant pressure, namely, Wwithl in Eq.  both with and without stratification from gravity, indicates
(16), though the total volume remains constant, as we althat the fluid behaves as if each phase relaxes at constant
ready discussed in Sec. V A 3. pressure, even though the total system relaxes at constant
As the average fluid densityp is changed and the equili- volume.
bration location of the meniscus is moved vertically across (ii) The simulations predict a rapid density change
the cell, the effective relaxation timegy at the two sensor  Jpp(t) from the piston effect within each phase in the same
locations are strongly affected by the proximity of the me-direction, immediately following a temperature step change
niscus. This is the result of the interplay of the thermal dif-Ae. The magnitude obp,(t)/Ae varies slightly with the
fusion in the bulk fluid and the diffusing boundary layer at reduced temperature along the critical isochore. This rapid
the meniscus, which operates very much in the same manndensity change is observed experimentally in the vapor phase
as near the boundary of the cell. Thus the density transierdut with a much larger amplitude than predicted. By contrast,
appears accelerated, generating a smallgr as evidenced it is hardly observable in the liquid phase. We tentatively
by sharp minima inres vs Ap. attribute the disagreement between experiment and predic-
Figure 17 shows the experimentals versusAp for the  tion to two assumptions made in the simulatiéa: There is
isotherm ofe=—3% 10 %. Here the meniscus position is no meniscus motion in the acoustic time regime énjdthe
more sensitive to changes Ap than ate=—1x10 % over meniscus temperature is solely determined by the saturation
the density range covered in our series of experiments, upovapor pressure at any time.
decreasing\ p the meniscus enters the cell at the top, passes (i) For |e|>1x10"3, the vapor appears to equilibrate
the location of both the top and the bottom sensor, and leavesore slowly than the liquid. This leads to thgg(liquid) to
the cell at the lower cell boundary. Therefore simulationsbe shorter tharnr .(vapop. The simulated spatial and tem-
predict dramatic changes of the relaxation times. The megporal profiles reveal the causes of the puzzle and show that
sured temporal density profiles at both sensors indicate dighe diffusing boundary layers have a stronger impact on the
continuities inT¢ at the appearance of the meniscus in thedensity equilibration in the interior of the liquid phase than
cell and its disappearance and a sharp anomaly as the menis-the vapor. The observetl reflects these dynamics. Be-
cus approaches and then passes each respective sensor la@se the density detector has a finite resolution, it cannot
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resolve the very small density variation in the asymptoticsampled. Also it is argued that for-t; the remaining tem-
regime. perature gradients in the fluid under the experimental condi-

(iv) The simulation shows that along the critical isochoretions were well below that for convection onset.
both thery+ and 7 first diverge asl . is approached and then Zappoli and co-worker§16] have carried out a detailed
roll over to a constant value because of fluid stratification innumerical calculation of mass transport in a square cavity
the cell. The behavior of the experimentak(liquid) agrees filled with fluid CO, at e=3x10"3. In their 2D geometry,
qualitatively with the isochore simulation. By contrast, whenthe temperature of one vertical boundary is changed by
T. is approached frone|=0.1, 7.z(vapop first decreases while the three other sides are thermally insulated. The com-
and then increases until it levels off. putations showed the signature of the piston effect over a

(v) The simulations and experiments along two isothermgime of the order ot; during which large density gradients
give insight into the equilibration processes as a function otind a vertical buoyant velocity component develop at the
average density over the range of0.15<Ap<0.15. By  boundary. This vertical buoyant velocity drives the bulk mo-
changing theA p, the meniscus position,, is made to vary tion by viscous coupling and does not change significantly
through the cell, passing one or both sensors and finallthe thermal structure of the boundary layer, thus the piston
reaching the cell boundary. This leads to striking changes irffect is almost convection independent. In the following
the experimental and simulated relaxation times. Especiallglow equilibration phase, which in the absence of convection
when the meniscus moves out of the cell boundary, the syshould have a relaxation time of order of a convective
tem equilibrates much faster, indicating that at times of thenotion develops under gravity out of the large density gra-
order of 7 the thermal equilibration changes from a “con- dients left by the piston effect and relaxed slowly with dif-
stant pressure” to a “constant volume” condition. fusion in the quasi isothermal portion of the fluid. This con-

(vi) Simulations of the density changes under microgravvective motion shortens the effective relaxation time and its
ity conditions show that+ and 7 continue to diverge in- intensity decreases slowly in a time of the ordefrofThere-
stead of leveling off ag is approached. fore Zappoliet al. conclude that in a fluid near the critical

The disagreements for the vapor phase, both in the tenpoint, thermal and mass equilibration processes are nearly
poral profile and inSp(vaport) and in 7 .z(vapop between uncoupled and the piston effect is responsible for 85% of the
the experiment and prediction in particular for temperature equilibration in a short time scale, while convec-
|e[>1x10"2 are not understood. Some plausible suggestion and diffusion homogenize the density on a much longer
tions have been advanced and possible shortcomings iime scale. The detailed calculations on how much the den-
theory were pointed out. New experimental data that we exsity equilibration is shortened by the quasi steady isothermal
pect to take with a cell of simpler, more ideal geometry andcritical convection have not yet been perforni@d].
insulated side walls might give a more favorable comparison Even though the geometry used in the calculatiofl®f
with the 1D simulations. is different from that used if6], where the heating of the flat
cell was from all the directions, their general conclusions
should still apply to our experiments otHe. It is therefore
of great interest to find out whether the discrepancy between

This research has been supported by NASA Grants Noghe predicted and observed time constants in*tHe experi-
NAGW-3328 and NAG5-379. The authors are very indebtednents is the result of convection, in spite of the argument
to L. Eicher for discussions, for helpful advice on a computermade on the reversible temporal density profiles for tempera-
problem occurring during the simulation, and also for a copyture steps in opposite directions.
of his own simulation paper on CQprior to publication.
The authors are also indebted to B. Zappoli for a copy of his
work prior to publication and helpful correspondence. Nu-
merous discussions with D. Murphy are also acknowledged. The coupled equations for temperature, pressure, and den-
sity are solved through iteration. The detailed iteration pro-
cedure to update the solution framth time to (h+ 1)th time
is as follows.

In presence of gravity, the possible onset of convection (i) EstimatedP/dt anddz,/at from their respective tem-
needs to be considered. As shown in Fig. 3[6f for  poral histories, where the subscriptis for “meniscus.”
AT>0 in the intermediate regime for timést,, the bot- (i) Calculate
tom half of the cell has a negative spatial density gradient,
which renders this portion of the fluid mechanically unstable, (n+1)_ p(n)
and should start convection, while the top half of the fluid is Po Po™+ (dPIdt)dt, (813
stable. Conversely, for an inverted stepAT, it is the top
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APPENDIX B: NUMERICAL PROCEDURES

APPENDIX A: FLOW VELOCITY AND CONVECTION

portion of the cell that becomes mechanically unstable. z "=z, M+ (gz)/gt)dt, (Blb)
A calculation of the convective motion is not possible in
the simulation of both the present paper and a previous one P(rrr]1+1): Pgn+l)+gzén(n+l)- (B10)

[6] because the numerical solution is sought only in one
dimension. It is argued that convection effects must be small
on the basis of experimental data: When the temperature step (i) Calculate T8 from P{*Y), assuming that the
AT was inverted, nearly the same temporal profi{€) was temperature at the meniscus is solely determined by the satu-
observed at two superposed locations where the density waigtion vapor pressure linBg,=f(T).
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(iv) Solve Eq.(5) for the temperature distribution at the
(n+1)th time in each phase separately, using the implicit 1T T I
scheme, the known boundary temperatures, and the latest 5 P -
availablegP/dt. ] i

(v) Calculatedz, /dt from Eqg.(12) using the temperature 1
distribution, latent heat, density, and conductivity at the « ]
(n+1)th time. Updatez,("*1) and P("* ) using Eq.(B1). R

(vi) Calculate the density distributiop(z’,t) from the
equation of state using the temperattifg’,t) and pressure
P(z’,t) distributions at the rf+ 1)th time, following which
the static and dynamic coefficients are updated.

m
.,

5

(vii) Reevaluate the distribution of the grid points in the 0.1+ B
laboratory coordinatéz} from
Z oo
2 dZ’ = i
Z: f 1" 1 (Bz) Q‘ "I 8
z't v
o p( ) 01 . |
T T
especially 0 1000 2000 3000 4000
t(s)
_ (z@mvdz (M dZ 3 FIG. 18. Simulated temporal profiles of interface motion
cal™ ﬁap Z/(n+1)?iq' (B3) 5z(t) scaled byh (top) and the total hea®,(t) generated at the
m

meniscus (bottom) for three values of the average density

, Ap=-0.10, 0, and 0.10 at=—-1x10"2, Ae=1x10* and
(viii) If the absolute value ofAf=(h.—h) is smaller | nder normal gravity.

than a preset tolerance, the iteration is stopped. Otherwise
dP/at is corrected using the Newton method with the deriva-
tive constructed of the last and curreiR/dt andAf inthe  and the temperature change rates are comparable in each
iteration. Then the iteration is repeated from stip phase {~500 9, the vapor volume starts to increase
The objective of the iteration is to seek a uniguie/Jt (9z,,/9t>0) due to the larger thermal expansion coefficient
while the temperature and pressure distributions affected bin the vapor; the meniscus moves backward to its initial lo-
the 9P/t will generate the density distribution that main- cation, as we have expected fyp=0.
tains the total volume unchanged at thet(1)th time. Usu- Coupled with the meniscus motion is the mass crossing
ally no more than five iterations are needed for the tolerancéhe meniscus. Because of the sharp pressure increase during
of 1x10 4 The calculated average density over the cell isthe early stage, the fluid in the vapor phase near the meniscus
within 1x 10 %2 of the known value. Then the temperature, is compressed into liquid, producing a heat sour@g>0)
pressure, and density at fixed spatial locations are interpand accelerating the temperature increase at the meniscus.
lated from their respective distributions for use in computingOnce the thermal diffusion plays a major role in the equili-
the temporal profiles. bration, the mass crossing can reverse its direction towards
We estimate the initiabP/dt via the heat input at two the final equilibrium density distribution, as we have dis-
boundaries, which in turn can be approximated by the spatiaiussed in Sec. Il. Then the meniscus becomes a heat sink
derivative of the error function, the simplest solution to the(Q;<0). In Fig. 18b) we show the dimensionless heat pro-

1D temperature distribution; thus duced per secon@(t) at the interface as a function of time.

As the result of the competition between the two processes,

(MD) <([9p) > b AT - the total dynamic heﬁt calculated frlcl)m :]he irrl]tegration of

- — . (B4 Q,(t) overt is about three times smaller than the static one

at guess T o {pCv) h\/W(DT)bdt calculated from the latent heat multiplied by the total mass

conversion.

This initial guess gives a value ofP/dt that is usually We have observed in the experiment a sharp and large
within a factor of 3 from the finabP/at after iterations. density response following a positivee step when the me-

niscus is inside or very close to a density sensor. As we can

APPENDIX C: MENISCUS MOTION see from Fig. 18, when the meniscus moves rapidly towards

the top boundary §z,,<0), some vapor leaves and some

We now discuss the motion of the meniscus under thdiquid enters the density sensor, leading to a sharp rise of the
conditions ofAp=0, e= —1x 10 2, and a positive tempera- measured density. Depending dp, the meniscus can re-
ture stepAe=1x10*. Figure 18a) shows the motion of verse its direction of motion, as seen from Fig. 18, with a
the meniscus as a function of time. During the early transientorresponding fall of the measured density. The magnitude
when the pressure change rate is high, the vapor phase @ the sharp density response is much larger than what could
compressed more than the liquid, therefore the vapor volumbe accounted for by the piston effect on the density change in
is reduced §z,<0). After the pressure increase fades outthe interior fluid of each phase.
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