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Measurements were carried out on the density changedr(t) in a pure fluid (3He! after a small step change
in the temperature of its container. The sample fluid was kept at constant average densitiesDr̄ and in the
coexisting liquid and vapor phases below the critical temperatureTc . The measurements were performed via
two superposed capacitive sensors. At temperatures far belowTc , the equilibration in the liquid and vapor
phases, measured, respectively, by the top and bottom sensors, are found to proceed very differently. AsTc is
approached, this difference diminishes; both the measured effective relaxation times level off and join
smoothly the data obtained aboveTc . This coexisting liquid-vapor system of3He is simulated in one dimen-
sion. The results are presented for the spatial and temporal evolution of temperature and density in the fluid
following a temperature step of the enclosure. The profilesdr(t) and their effective relaxation times are
compared with the experimental observations in both phases. There is a qualitative agreement between the
simulation and experiment for (Tc2T)/Tc&1023, and the quantitative differences further away fromTc are
discussed. The results of experimental measurements and of computer simulations along isotherms are dis-
cussed and lead to complementary information on the equilibration dynamics as a function of average density.
The asymptotic relaxation times obtained from simulation and from a formula based on the average thermal
diffusivity of the entire fluid sample are compared and discussed, both for normal gravity, and also under
microgravity conditions where both diverge asTc is approached.@S1063-651X~96!02606-2#

PACS number~s!: 44.10.1i, 05.70.Jk, 64.60.2i, 66.10.Cb

I. INTRODUCTION

Assessing the equilibrium state of thermostatic properties
and the steady state of transport properties is particularly
important near the critical point of a pure fluid. Here the
critical slowing down due to the diminishing thermal diffu-
sivity becomes an important factor during relaxation between
different states of equilibrium. It is important to understand
the equilibration dynamics of the various thermodynamic
variables, such as temperature and density, in particular in
connection with experimental investigations of critical phe-
nomena under microgravity conditions@1–5#.

In our first paper@6# we described experiments and com-
puter simulations of density equilibration above the critical
point following a stepwise temperature change of the fluid
enclosure. The fluid selected for these studies is3He because
of the past extensive studies in this laboratory of both static
and transport properties@7,8#. The critical parameters are
Tc53.310 K (T62 scale! or 3.316 K (T76 scale!,
rc50.0414 g/cm3, andPc51.153106 dyn/cm2. The results
of the earth-bound experiments with3He ~gravitational ac-
celerationg0) @6# show the ‘‘piston effect’’ and the effect of
stratification on the temporal density profiler(z,t). The
computer simulations were also carried out at normal gravity
g0 and with the average densityr̄ and initial and final tem-
peratures that are similar to the experiments. Hence a direct
comparison between experiments and predictions could be
made. There was good agreement in the shape and amplitude
of the density changes, but the computed equilibration time
scale was found to diverge more strongly than the experi-
mental one asTc was approached. For the reduced tempera-
turese[(T2Tc)/Tc , where the stratification profile in the
cell becomes nonlinear, both the experimental and computed

time scales level off to a constant value asTc is approached
closer.

During the same series of experiments, we conducted a
similar systematic investigation on the equilibration in the
coexisting phases belowTc . In this paper we give an ac-
count of these results, some of which were presented in a
preliminary form elsewhere@9,10#. A computer simulation
on the temporal and the spatial evolution of this two-phase
system including the interface motion will be compared with
the experimental results.

In Sec. II of this paper, fluid equilibration, convection
effects, and equation of state near the liquid-vapor critical
point are briefly reviewed, and in Sec. III, the equations that
form the basis for the computer simulation are presented.
The instrumentation and the experimental procedures are re-
viewed and described in Sec. IV. The results and discussions
for equilibration along the critical isochore and also along
two isotherms—both from experiments and from
simulation—are presented in Sec. V. In the Appendixes, the
spatial profile of equilibrium properties under the influence
of gravity is presented at several temperatures. The calcula-
tions of the specific heat and thermal diffusivity in the two-
phase system is outlined. The numerical simulation proce-
dures are presented and the results of the computer
simulation of the interface motion are shown.

II. EQUILIBRATION NEAR THE CRITICAL POINT:
A SHORT BACKGROUND

A. Single phase

We consider the problem of the equilibration of a fluid at
constant average densityr̄, kept in a flat cell bounded by two
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parallel horizontal plates, after a stepwise temperature
changeDT of the enclosure. The plates are assumed to have
a very high thermal conductivity. Onuki and Ferrell@11# ex-
plained the fast temperature equilibration observed in the
single phase of a fluid above the critical point. Here the
expansion within the boundary layers due to the rising wall
temperature compresses the bulk fluid away from the wall,
transferring energy adiabatically from the boundary to inte-
rior. This so-called ‘‘piston effect’’ changes the temperature
at the fluid’s interior much faster than if the equilibration
was achieved only via thermal diffusion. In the absence of
gravity, the equilibration of the supercritical fluid will then
show three regimes and will have two characteristic time
constants.

~a! The first regime is due to the piston effect. Within a
time scale of

t15
h2

4g2DT
~1!

the temperature inside the fluid is raised homogeneously
from T0 to T01aDT with a;0.6 for 3He @based on our
one-dimensional~1D! computer simulation for3He#. Here
DT[l/rCP is the thermal diffusivity,l is the conductivity,
andg[CP /CV is the ratio of specific heat at constant pres-
sure over specific heat at constant volume. The piston effect
also raises sharply the density inside the fluid to a value
slightly abover̄ and introduces strong density gradients at
the two horizontal boundaries.

~b! In the intermediate regime, the temperature inhomo-
geneity decays with time ast21/2 and the density gradients at
the boundaries propagate into the interior of the fluid with
decaying amplitude as time increases.

~c! In the diffusive regime, both temperature and density
throughout the fluid approach their equilibrium value with a
characteristic timet5(h2/4p)DT

21 assuming g@1. For
3He withDr̄50 andh50.43 cm ate5131022, t150.35 s
andt5460 s.

B. Coexisting phases

We expect the piston effect to exist in a coexisting two-
phase system. However, we are not certain at present on how
the impedance to the pressure waves at the meniscus would
influence the piston effect. Additionally we anticipate that
the magnitude of the piston effect in each phase depends
strongly on the respective thermodynamic coefficients in the
two phases.

For the two coexisting phases, we use the expression

tg;
h2

4~DT!b
F CV̄

~CP!b
G2 ~2!

for the characteristic piston effect timetg ~instead of t1)
where inhomogeneity due to gravity~see Eq.~56! of @11# and
also Fig. 2 of @6#! is taken into account. HereCV̄ is the
spatial average of localCV over the whole fluid layer and
(DT)b and (CP)b are the properties at the fluid boundaries
prior to the temperature change.~In the calculation ofCV̄ we
do not include here the effect of the mass crossing the me-
niscus since it is mostly an effect that is significant at

t@tg . For the complete calculation ofCV̄ see Ref.@12#.! We
use the average of thetg obtained from the (DT)b and
(CP)b at the liquid and vapor boundaries.

Onuki and Ferrell@11# have also given another character-
istic time, called crossover timetg2 l , for a two-phase sys-
tem,

tg2 l5gt1 . ~3!

They predicted that the main inhomogeneity in the fluid sys-
tem is to exist near the interface fort*tg2 l . This is to be
compared with the spatial temperature profiles obtained from
simulations~see Sec. V!. Inserting the relevant thermody-
namic parameters for3He with Dr̄50 andh50.43 cm, we
obtain tg51.2, 0.10, and 0.012 s andtg2 l542, 37, and 26 s
for ueu5131022, 131023, and 231024.

III. NUMERICAL CALCULATION

In this paper,P, T, andr are all scaled by their respective
values at the critical point. In Ref.@6#, we presented the
governing equations in one dimension for the change of pres-
sure, temperature, and density in a homogeneous fluid, where
the flow velocity was neglected. The coupled equations were
solved numerically in the laboratory coordinate$z%. When a
material coordinate$z8% is introduced@13# where

z85E
0

z

r~x,t !dx, ~4!

the same set of equations as in@6# are transformed to@14#

]T

]t
2F12

1

gG S ]T

]PD
r

]P

]t
5

1

cP

]

]z8 Frl
]T

]z8G , ~5!

P~z8,t !5P~z850,t !1gz8. ~6!

The pressure change rate at fixedz8 in Eq. ~5! is independent
of z8 based on Eq.~6!, which can be calculated from

]P
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5
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0
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]TD
P

]T
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0
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. ~7!

HereM is the total mass of the fluid. Equation~7! is derived
using the differential equation of state

]r

]t
5S ]r

]TD
P

]T

]t
1S ]r

]PD
T

]P

]t
, ~8!

with the condition of total volume being constant. Boukari
et al. @14# have used Eqs.~5!–~7! to study the equilibration
process of Xe near its critical point. We double-checked our
simulations published in@6# with Eqs.~5!–~7! and came out
with the same numerical results.

In this paper, we adapt Eqs.~5!–~7! to a two-phase sys-
tem, taking into account the mass transport across the menis-
cus. A report of computer simulation for the coexisting
phases has been published by Straub and Eicher@15# for
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CO2 with Dr̄50 and fore52131022. In Sec. V, we shall
discuss their results together with ours.

In a two-phase system, the total volume is the sum of the
liquid and vapor volumes,

V5E
0

zm8 dz8

r vap
1E

zm8

Mdz8

r liq
, ~9!

where the cross section is taken to be unity andzm8 is the total
mass of the vapor phase and a function of time. Taking the
time derivative of Eq.~9! and using the differential equation
of state, Eq.~8!, we have
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. ~10!

Here ]zm8 /]t is the net mass flux across the meniscus and
together with latent heatDh it yields the total heat generated
at the meniscus,

Ql52Dh
]zm8

]t
. ~11!

This heat source (Ql.0) or sink (Ql,0) equals the differ-
ence of heat currents from both sides of the meniscus. Thus
we have

]zm8

]t
5

1

Dh Frl
]T

]z8 U
liquid

2rl
]T

]z8 U
vapor

G
m

. ~12!

Equations~5!, ~10!, and~12! give us a complete description
of the equilibration process in the two-phase system.

To solve these equations, we assume that the phase tran-
sition occurs only at the meniscus. At any other location in
the fluid, especially within boundary layer, the liquid can be
superheated and the vapor can be subcooled into the region
between the coexistence and spinodal curves. The detailed
procedures to solve numerically Eqs.~5!, ~10!, and~12! are
given in Appendix B.

Although the flow velocity is implicitly included in Eqs.
~5! and ~6! with the acceleration and viscous dissipation ne-
glected, our approach to solve these equations in one dimen-
sion prevents us from studying numerically the convective
flow motion since convection in one dimension is excluded.
Zappoli and co-workers@16# have carried out a detailed nu-
merical calculation of mass transport in a square cavity filled
with supercritical CO2 for e5331023, where they studied
the interplay of the piston effect, convective transport, and
thermal diffusion. A detailed discussion on the convection
effects will be given in Appendix A.

In our model of thermal equilibration, the vapor phase in
the top part of the cell is separated from the liquid by a flat
horizontal meniscus and for the sake of simplicity no account
is taken of effects from the surface tension. In reality, as the
critical point is approached, the surface tension of3He van-
ishes just like in other classical fluids and confirms the pre-
dictions @17#. Under normal gravity, these effects cause the
meniscus to curve upward near boundaries, which leads in

the experimental cell to a departure from the flat surface
assumed in the calculations. Under near-zero gravity condi-
tions, it is known that bubbles of vapor surrounded by liquid
are formed belowTc @18#.

IV. EXPERIMENT

Here we outline briefly the experimental methods and
procedures and refer for more details to@6#. The fluid sample
is enclosed in a flat cylindrical cell of oxygen-free high-
conductivity copper, with a fluid layer height ofh54.3 mm
and a diameter of 3.3 cm. The cell is shown schematically in
Fig. 1. Inside the cell are two rigidly supported horizontal
capacitors separated by 2.1 mm center to center. Each ca-
pacitor has a gap of 0.13 mm between two perforated stain-
less steel blades of 0.13 mm thickness. It measures the di-
electric constante* of the fluid, from which the local
densitiesr top andr bot are obtained via the Clausius-Mossotti
relation. Such determination has a resolution of
dr/r5231026, which is conditioned by the stability and
electronic noise of the detection system. During a series of
measurements, the average densityr̄ in the cell is kept con-
stant. A sequence of computer-programmed small tempera-
ture stepsDT of the fluid enclosure is produced as shown in
Fig. 1. Once the density equilibrium following a previous
DT step has been reached within the experimental resolution,
the next step is implemented. Steps of opposite directions are
used to test the reversibility of the process and to search for
possible effects from convection. The temperature calibra-
tion and the location ofTc and ofrc have been described in
@6#.

When two phases coexist in the cell and stratification in
each phase is negligible, a change in temperature from the
initial Ti5T0 to the final Tf5T01DT temperature, with
Tf.Ti , will have the equilibrium value ofr liq decreased and
that ofr vap increased. The equilibrium values of the density
in each phase can be described by the equation of state of the
coexisting curve~CXC! for ueu&0.1,

DrCXC56Bueub. ~13!

Here Dr[(r2rc)/rc is reduced density,b50.355 is the
effective critical exponent for3He, and the signs of the am-
plitudeB (1 and2) are for the liquid and vapor. Close to

FIG. 1. Top: schematic view of the flat cell for a fluid density
measurement at two superposed locations. The dashed line repre-
sents the meniscus. Bottom: temperature step sequenceDT of the
cell versus timet.
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Tc , besides these changes inr liq andr vap, a stronger strati-
fication atTf will increaser liq and decreaservap at the loca-
tions away from the meniscus.

Under equilibrium conditions, the vertical locationzm of
the meniscus~see Fig. 1! for a sample of an average reduced
densityDr̄ at a givenueu can be approximated by

zm5
h

2 F12
Dr̄

uDrCXCuG , ~14!

whereDrCXC is calculated from Eq.~13!. Equation~14! is
derived from the mass conservation and assumes constant
density in each phase~a more accurate result can be obtained
from the cubic model when stratification in each phase is
included!. Since uDrCXCu decreases for a positiveDT, the
meniscus ends up at a higher~lower! location than its initial
one for a fluid of r̄.rc ( r̄,rc). Given the coexistence
curve of Eq.~13!, Eq. ~14! expresses a well known fact that
the meniscus is located atzm5h/2 for the fluid of r̄5rc
regardless of temperature, namely, the ‘‘rectilinear diam-
eter’’ has a slope of zero, which is very nearly so the case for
3He @7#.

V. RESULTS AND DISCUSSION

In this section we present first the numerical simulations
for the fluid sample along the critical isochoreDr̄50, fol-
lowing the temperature step of the fluid enclosure, and we
compare them with the experimental observations. Then we
will use the same procedure for the fluid along isotherms,
i.e., with Dr̄Þ0, where the meniscus changes to a different
location at the final equilibrium temperature. These results
will bring interesting complementary information to that ob-
tained alongDr̄50.

A. Critical isochore

1. Nonstratified coexisting phases

For ueu.531023, density stratification in each phase is
negligible due to the small compressibility; but the large den-
sity difference between the two-phases causes distinct re-
spective dynamics. Figure 2 shows spatial profiles of the
changesde(z,t) and dr(z,t) at several time instants for
e52131022 and a stepDe5DT/Tc51.231025.

Because of the larger coefficient of (]T/]P)s in Eq. ~5!,
the vapor phase is more efficient in converting energy adia-
batically than is the liquid phase. Thus a nearly uniform pres-
sure change in the cell results in a larger temperature change
in the vapor phase than in the liquid. We can see from Fig. 2
that the piston effect dominates the temperature equilibration
up to at leastt510 s, fore52131022. After t.10 s, and
starting from the cell boundary (z50), the temperature in
the vapor phase passes beyond the final equilibrium value.
This is the result of the adiabatic energy conversion due to
the increasing pressure in the cell. A similar phenomenon
has been predicted during the simulations forT.Tc when
stratification is strong@6,14#.

Based on the derivation of Eq.~3! by Onuki and Ferrell
@11#, we equal the temperature difference between the
middle of the liquid and vapor phases to that between the
meniscus and its final equilibrium value. This gives us the

crossover timetg2 l of 4 s from the simulation, compared to
tg2 l542 s from Eq.~3!. A large inhomogeneity in the fluid
system exists throughout the liquid and vapor phases for
t*tg2 l , which differs from the predictions of Ref.@11#. We
note that thetg2 l given by Eq.~3! is closely related to the
time when the temperature in the vapor phase increases be-
yond its final equilibrium value due to the adiabatic heating.
This observation holds over the whole investigated tempera-
ture range under microgravity condition.

The large temperature gradients close to the cell bound-
aries lead to large density gradients there. The density dis-
continuity at the meniscus produces another boundary layer
and accelerates the density equilibration towards its final
value near the meniscus at times up to the order oft. The
density transients at different locations in the cell can be
understood in terms of the differential equation of state, Eq.
~8!, and of the boundary layers diffusing into the interior of
each phase. During the time interval when the piston effect
dominates the temperature equilibration, the simulation
shows that the density rises quickly in the interior of both the
vapor and liquid phases (dr'1131025) due to the com-
pression from the boundary layers. This is similar to that for
the homogeneous fluid atT.Tc . After the piston effect de-
cays, the larger temperature gradients remaining in the liquid
leads to a larger density change there than in the vapor. This
is clearly shown by comparing the density changes in both
phases at times, say,t5100 and 200 s. Since the final density
changes aredrvap(t5`)52dr liq(t5`), but the initial
density changes within the boundary layers have same sign,
the expansion of the boundary layers affects differently the
density transient in the two phases, making the density tran-
sient in the liquid phase appear faster than in the vapor
phase.

FIG. 2. Simulated spatial profiles ofe2e` anddr[r2r0 for
the coexisting phases of3He on critical isochore versusz at various
times ~in s! after a temperature stepDe51.231025 at
e52131022.
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In Fig. 3 we present the temporal profiles of the tempera-
ture changede anddr at the four locations as indicated in
the graph, of which the second and third are the density
sensor locations in our experimental setup. When the tem-
perature in the middle reaches 0.6DT, the time is found to be
1.7 s, which is to be compared withtg51.2 s calculated from
Eq. ~2!. Figure 3 shows that in the vapor phase, after the
initial sharp changes due to the piston effect, thedr(t)
curves for bothz/h50.1 and 0.267 tend towards the equilib-
rium value in a nearly exponential fashion. By contrast, in
the liquid phase the transientsdr(t) for z/h50.733 and even
more so for z/h50.9 pass beyond the value
dr(`)51.131024 before slowly approaching the limiting
value from below. The ‘‘undershoot’’ beyond the equilib-
rium value is more strikingly shown in Fig. 4 when the simu-
lated ur(t)2r(`)u is plotted vs time on a semilogarithmic
scale. This figure also shows that there exists indeed a spa-
tially independent asymptotic relaxation time witht5647 s.
In this paper, we use the word ‘‘undershoot’’~or ‘‘over-
shoot’’! to describe a transient passage of the temperature or
densitybelow ~or above! its final equilibrium value.

The simulation results obtained by Straub and Eicher@15#
for CO2 at e5131022 are consistent with those presented
for 3He in Figs. 2 and 3. They show in particular similar
amplitudes for the initial changes in the respective temporal
profiles of bothrvap(t) andr liq(t).

In Fig. 5 the corresponding experimental observation se-
quence is shown, where both positive and negative tempera-
ture steps of equal magnitude were taken. It can be clearly
seen that the temporal density profiles are entirely reversible
upon changing the sign ofDe. The effective relaxation times
indicated for each relaxation were obtained by approximat-

ing the long-time density transient with a single exponential
function

dr~z,t !5dr~z,`!1A~z!exp~2t/t! ~15!

and the values were found to be quite reproducible. This
reversibility of the entire profile appears to exclude convec-

FIG. 3. Simulated temporal profiles ofde[e2e0 and dr for
the coexisting phases of3He on the critical isochore at the two
sensor locations (z/h50.267 and 0.733) and two locations close to
the cell boundaries, following a temperature stepDe51.231025 at
e52131022.

FIG. 4. Semilogarithmic plot ofur(t)2r(`)u taken at the two
sensor locations (z/h50.267 and 0.733) and the two locations close
to cell boundaries forDe51.231025 at e52131022. The
double-arrowed line marks the limit of experimental resolution in
dr.

FIG. 5. Experimental observations of the temperature step se-
quence and the density temporal profiles in the liquid and vapor
phases of3He for e52131022, De561.231025, andDr̄50.
The numbers tagged on the curves representteff .
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tion effects at these small steps ofDe. The expanded portion
of the early transient for a positive temperature step in Fig. 5
is shown in Fig. 6 and is compared with the simulated tran-
sient of the same temperature step change. Several aspects
should be noted.

First, there is fair qualitative agreement between simula-
tion and experiment in that they both show the striking dif-
ferences between the liquid and vapor phases. When Eq.~15!
is used to analyze the simulated transients for the remaining
;1/3 of the total density change and in the same way as for
the experiments, the effective relaxation times are found to
be t eff( liq)5 78 s andteff(vap)5 625 s, which compares
with the experimental valuesteff555 and 700 s. The differ-
ence between the liquid and vapor phases is understood from
the simulation as the consequences of~i! the stronger piston
effect in the vapor phase and~ii ! the undershoot caused by
the expanding boundary layer of the liquid phase. As one can
see from Fig. 4, the attempt to measure the asymptotic relax-
ation time from the liquid density transient is limited by the
experimental resolution~marked by the double-arrowed hori-
zontal line!: what the experiment can measure is effectively
the portion of the transient that precedes the undershoot and
leads to a much shorter time than the asymptotic relaxation
time t. On the other hand,t can be better approximated
from the measurement in the vapor phase, even though the
finite instrument resolution leads to an effective relaxation
time larger than the asymptotic one.

Second, there are systematic differences at short times
between simulation and experiment. In the vapor phase, the
experiment shows a considerably larger initial sharp rise than
does the simulation. In the liquid phase, the experiment does
not show the predicted initial sharp rise and maximum.

As ueu is increased, the observed density profilesrvap(t)
show a systematic trend whereby the relative amplitude of
the sharp increasedrpe ~for ‘‘piston effect’’! immediately
after the stepDe becomes larger and eventually nearly
equals the total changedr(`). The computer simulation re-
sults for the profilervap(t) and forr liq(t), by contrast, do not
show a substantial temperature dependence for
ueu.131022. Figure 7 illustrates the temperature depen-

dence of the ratiodrpe /dr(`) in the vapor phase, as ob-
tained from experiments and simulations. The straight line in
the graph is a fit ofa1b log10(ueu) to the data of No. 2
defined in the graph withb50.35, a value that happens to be
close to the effective critical exponentb. We note that
drpe /dr(`).0 for ueu,231024. The ratio from the simu-
lation is much smaller than in the experiments for
ueu.531024. Here the changedrpe is that of the plateau
after the sharp initial rise shown in Fig. 6.

2. Stratified coexisting phases

In Fig. 8 the experimental observations after two consecu-
tiveDe steps ate52131023 are shown and the profiles are
again found to be quite reversible upon a sign change of
De. The shapes in the late equilibration stage of the observed
density transients in both the liquid and vapor phases, of
opposite sign, have become more similar, resulting in more
comparable effective relaxation times. The experimental ob-
servations are compared with the simulation results for
De.0. As can be seen from Fig. 8, the simulation takes a
much longer time to approach equilibrium than the experi-
ment does. In the simulation, the amplitude ratio of the sharp
initial rise drpe to the total density changedrvap(`) in the
vapor has half the size of that fore52131022. By con-
trast, this amplitude ratio for the experimentaldrvap(t) is
considerably smaller than at largerueu, as shown in Fig. 7.

As ueu becomes smaller than 131023, the simulation
shows quite different spatial profiles from those at
e52131022 at various times: the amplitude ratio of the
temperature overshoot in the vapor phase over the tempera-
ture inhomogeneity in the liquid phase is much larger;
smaller diffusivity reduces the role that the expanding
boundary layers play, thus there is no visible undershoot in
the temporal evolution of the density in the liquid phase; the

FIG. 6. Density temporal profiles from the same temperature
step sequence as in Fig. 5, but expanded in time, and compared with
corresponding computer simulations. The numbers tagged on the
curves representteff .

FIG. 7. Ratiodrpe /dr(`) in the vapor phase from experiments
as a function of reduced temperature and forDr̄50. The inserted
schematic temporal profile defines the amplitudes ofdrpe of the
first peak~No. 1 open squares! and of the minimum~No. 2 solid
circles!. For ueu,231023 the difference between the two ampli-
tudes cannot be resolved. The simulation does not show the mini-
mum but a plateau with a small slope. The dashed line is taken at
the foot of the plateau.
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density change at equilibrium shows the effect of large strati-
fication change. The experimental observations of the den-
sity transients after two consecutive6DT steps show the
profiles to be quite reversible, which seems to exclude any
obvious convection effects. Here the contribution from the
sharp initial response to the total density change is no longer
observed in the vapor phase and the density temporal profiles
for the sensors at the location of the liquid and vapor phases
are closely the same.

3. Time constants and data discussion

In Fig. 9 we present the predicted relaxation times. Be-
cause it is interesting to compare the results for the regimes
of single phase and coexisting phases, we have also pre-
sented in the same figure the results obtained previously for
e.0 @6#. Here we discuss three types of relaxation times.

(a) The asymptotic timet. This time is obtained by fitting
the simulatedur2r`u over the available straight portion as
shown in the semilogarithmic plot of Fig. 4. For equilibration
under normal gravity, both curves coming from opposite di-
rections (e,0 ande.0) join smoothly atTc . Under micro-
gravity conditions, both curves diverge atTc ~dot-dashed
lines!.

(b) The estimated asymptotic timetest. The purpose of
introducing this time is to obtain a physical interpretation for
and a check on thet from the simulations. In a single-phase
fluid under conditions of constantr̄ and for timest.g2t1 ,
Onuki and Ferrell@11# predict an exponential decay of the
temperature transient with a relaxation time given by

t5
h2

Ap2DT
, ~16!

whereA is a function ofg varying fromA54 for g@1 to
A51 for g51 @19#. If the equilibrium is approached under
the condition of constant pressure instead of constant aver-
age density, the coefficient would beA51 independent of
the value ofg. We have obtained forT.Tc a good estimate

of the relaxation time we define astestby using Eq.~16! with
theDT replaced with its spatial average when a strong den-
sity stratification is present and the result is shown in Fig. 9.
We note that this estimate is in good agreement with thet
from simulations when the stratification is small and both
exhibit the leveling off of the asymptotic relaxation asT
approachesTc in presence of the Earth’s gravity.

For the two-phase system, we use again a spatial average
of DT in Eq. ~16! with A54 ~implying g@1) as an estimate
for t of the overall equilibration. The result is also shown as
test in Fig. 9. In contrast to the result of the single phase, the
estimation based on Eq.~16! is significantly lower than the
t obtained from the simulation, by a factor varying from 1.7
at ueu5131025 to 5.0 atueu5831022 for g5g0 , as shown
by the solid line in Fig. 10. One possible explanation for this
discrepancy might be that in the two-phase system, the vol-
ume of each phase can change at the expense of the other
while their total volume remains constant. This is visualized
in Fig. 18 of Appendix C, which shows the meniscus motion
after the temperature step change. Since equilibration does
not proceed under conditions of strictly constant volume for
each phase, we anticipate a change of the factorA in Eq. ~16!
from its value of 4.

The main reason for the variation oft/test with ueu is the
oversimplification of using the average of the localDT in the
calculation oftest. For ueu.131023, t/test is larger than 4
because of the approximation ofg@1. A proper accounting
of g will raise test, hence lowert/test. This effect was not
included in our calculation oftest. For ueu,131023, where
one can useg@1 to a very good approximation,t/t est be-
comes smaller than 4 because of the spatial average ofDT
fails to describe qualitatively the effect of stratification on
the equilibration. When a simulation under microgravity

FIG. 9. Computed relaxation times versus the reduced tempera-
ture, both below and aboveTc . The symbols areteff obtained from
the density transients at the top and bottom sensors as explained in
the text. The solid lines are the asymptotic timest obtained from
the simulations. The dashed lines are the relaxation timestest from
Eq. ~ 16!. The above are under normal gravity. The dot-dashed lines
aret under a reduced gravity ofg5g031026.

FIG. 8. Density temporal profiles in the liquid and the vapor
phases after temperature stepsuDeu5631026 at e52131023

and forDr̄50. The computer simulation forDe.0 is shown on the
left-hand side. The observed data after two consecutive temperature
steps in opposite directions are on the right-hand side.
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conditions is performed and botht andtestdiverge, the ratio
t/test tends to 4.0 asueu→0 ~dot-dashed line with open
squares in Fig. 10!.

(c) The effective relaxation timeteff at the location of the
top (vapor) and bottom (liquid) sensors.Shown also in Fig. 9
are the values ofteff at the sensor locations, obtained by
fitting Eq. ~15! to the simulated density transients over the
last 1/3 of the total density change. As we have seen from
Figs. 2 and 4, theteff from the liquid phase is affected by the
density undershoot that is caused by the diffusion of the
boundary layer. Therefore it is purely accidental that
teff~liquid! coincides withtestover a wide temperature range.
We note that theteff~vapor! follows the asymptotic relax-
ation timet closely for ueu.531023.

In Fig. 11 the effective relaxation times obtained from the
experiment are presented both below and aboveTc for com-
parison, together with the simulated data. In contrast to the
single-phase regime aboveTc , the experiments indicate two
time scales, for the liquid and the vapor, respectively, which
join neare52131023 asTc is approached. One of the time
scales diverges with decreasingueu, with a similar power
exponent as in the single phase, while the other decreases.
Both times then increase and level off asueu tends to zero
and join those from the single phase atTc .

Both the teff~vapor! and teff~liquid! obtained from the
simulations increase asTc is approached. Therefore a signifi-
cant discrepancy exists between experiments and simulations
below Tc , particularly in the regimeueu.131023, where
stratification is small. We note that it is in this regime that
teff and the ratiodrpe /dr` in the vapor phase show strong
differences from simulations and we suspect that their behav-
ior must be correlated. Both these quantities show a marked
decrease with decreasingueu. Hence the situation belowTc
differs appreciably from that aboveTc , where the computed
and observed density profiles were in good agreement, ex-
cept for the time scales, and there was qualitative agreement
in the trend ofteff with e.

There is another discrepancy between the simulation and
measurement onteff in the region of smallueu with large

stratification. In the simulation,teff~top! is shorter than
teff~bottom! for T.Tc . This is explained as the influence of
the temperature overshoot on the density transient near the
cell top @6#. On the other hand, forT,Tc , the influence in
the liquid phase of the diffusing boundary layer on the den-
sity transient is stronger than the influence of the temperature
overshoot in the vapor phase. Thereforeteff~bottom! for the
liquid is shorter thanteff~top! for the vapor. However, by
contrast, the measurements show thatteff~top! is shorter than
teff~bottom! for bothT.Tc andT,Tc .

B. Isotherms

We have discussed the possible reasons for the qualitative
disagreement in relaxation times between the simulation and
experimental observation along the critical isochore. The
spatial profiles ofr(z,t) ande(z,t) when equilibrium is ap-
proached and the heat generation~or absorption! at the me-
niscus are two key factors. The simulation along isotherm
reveals more about these two factors since the meniscus lo-
cation and the heat generated or absorbed at the meniscus are
functions of the fluid average density.

Here we present two extreme situations. In the first one at
e52131022, there is no stratification within each phase,
although there is a phase separation under the Earth’s grav-
ity. The two phases coexist in the cell throughout the inves-
tigated region 20.17,Dr̄,0.09. In the second, at
e52331024, stratification is important within both phases
and also the coexistence regime exists only foruDr̄u,0.08.
Here we will see dramatic changes occurring in both the
spatial and temporal density profiles—and therefore in the
relaxation times—when meniscus and latent heat are re-
moved. Along both isotherms, discontinuities or sharp ex-
trema inteff are predicted and observed at a sensor when the
meniscus approaches and leaves the location of this sensor as
Dr̄ varies.

FIG. 10. Ratio of the relaxation timest/test along the critical
isochore, wheret is from simulations andtest is calculated as de-
scribed in the text. Solid circles, under normal gravityg5g0; open
squares, under microgravity conditions withg5g031026.

FIG. 11. Relaxation timesteff determined from the top and bot-
tom sensors versus the reduced temperature, both below and above
Tc . Below Tc the symbols represent the relaxation times in the
vapor ~squares! and liquid ~solid circles!: Larger symbols, experi-
ments; smaller symbols, simulations. The various lines~solid and
dot-dashed! are guides to the eye.
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1. The isotherm ofe52131022

In Fig. 12 we present the simulated spatial profiles of
e2e` and dr at various time instants for two average re-
duced densitiesDr̄520.10 and 0.10. The computations are
made ate52131022 with a stepDe5131024. Both the
temperature and density spatial profiles are strongly affected
by the meniscus location. ForDr̄520.10, where the vol-
ume ratio of the vapor phase to that of the liquid phase is
larger than forDr̄510.10, the piston effect is stronger.
This results in a faster change of the average temperature for
Dr̄520.10~clearly seen att550 s! and a stronger tempera-
ture overshoot in the vapor phase, as compared to the results
for Dr̄510.10.

The shapes of the density transients~not shown! for the
two average densities are also strongly affected by the me-
niscus location and the difference in the magnitudes of the
piston effect. A strong density undershoot appears in the liq-
uid phase forDr̄520.10 but not forDr̄50.10. Further
analysis of the density transients, made in the same way as in
Fig. 4, shows that an asymptotic relaxation timet exists for
the entire fluid withDr̄Þ0.

The computed relaxation times from the simulations
along the isotherm ofe52131022 are shown in Fig. 13.
The variation of the asymptotic relaxation timest obtained
from the simulations versusDr̄ is larger than that oftest.
The ratio t/test varies from 5 atDr̄520.12 to 2.8 at
Dr̄50.14. We believe this variation to result from the over-

simplified estimation oftestusing spatial average ofDT , just
as it was the case for the calculation of the ratio along the
critical isochore.

The computed effective relaxation times obtained from
the density transients at the two sensor locations are also
shown in Fig. 13. ForDr̄.20.12 the bottom sensor mea-
sures the density of the liquid phase and forDr̄,0.12 the
top one measures the density of the vapor phase. However,
the dependence of theteff on theDr̄ for both the liquid and
vapor phases deviates dramatically from that oft. We ex-
plain the behavior ofteff~liquid! as follows. As theDr̄ in-
creases, the magnitude of density undershoot atz/h50.733
decreases~this is related to the weaker overall piston effect!,
and the density transient at this location follows better
the temperature transient, resulting in the increased
teff~bottom!.

The temporal density profiles obtained experimentally and
from the computer simulation along the isotherm
e52131022 resemble those presented in Fig. 6. Again the
observed amplitude ratiodrpe /dr` in the vapor phase is
considerably larger than in the simulations, which is of the
order of 0.1. This experimental ratio is found to vary with
Dr̄ as shown in Fig. 14.

In Fig. 15 we show~a! the meniscus location calculated
from Eq. ~14!, based on the assumed symmetric location of
the sensors in the cell,~b! the densities measured by the two
capacitive sensors, and~c! the effective relaxation times
measured from the experimental density transients vs the
Dr̄ at e52131022. The bottom sensor measures the liquid
density for Dr̄.20.072 and the vapor density for
Dr̄,20.112. The width of the transition from the liquid to
the vapor is caused by the finite sampling width~0.38 mm!

FIG. 12. Simulated spatial profiles ofe2e` anddr at various
times ~in s!. The simulations are made along an isotherm of
e52131022 with a temperature stepDe5131024 for two aver-
age densitiesDr̄520.10 andDr̄50.10.

FIG. 13. Computed relaxation times from the simulations along
the isotherm ofe52131022. The symbols1 and3 represent
teff obtained from the simulated density transients at the top and
bottom sensors as explained in the text. The solid circles represent
the asymptotic timet obtained from the simulations. Open circles
represent the relaxation timestest from Eq.~16! under normal grav-
ity. Along this isotherm over the rangeuDru,0.16, the fluid has
always two coexisting phases.
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of the capacitive sensor when the meniscus moves across it,
which is indicated by the two dashed lines in graph~a!. The
discrepancy between the predicted and measured density
transitions versusDr̄ is explained if the location of the pair
of the sensors is not exactly symmetric in the cell, but moved
upward by 0.2 mm. It is interesting that the transition width
of the measured effective relaxation time is larger than that
from the equilibrium density measurement. We interpret this
observation with the help from Fig. 12. Besides the cellboundary layers, there are also the interface layers within

which the density changes in the opposite directions in the
liquid and vapor phases. Even though the physical location
of the meniscus is outside the sensor, the effect of the inter-
face boundary can still be felt by the sensor via the interface
layers. Therefore the ‘‘dynamic response width’’ is larger
than the ‘‘static transition width.’’ ForDr.20.06, theteff
in both phases increases with increasingDr̄ and their ratio
remains nearly constant. The behavior of theteff~liquid! from
the experiment agrees with that from the simulation~see Fig.
13!. However, the experimentalteff~vapor! increases with the
increasingDr̄ for 20.12,Dr̄,0.08, while the simulated
teff~vapor! varies in the opposite direction in the same range.
Here again, experiment and prediction do not agree, as was
found along the critical isochore forueu.1023. We note
again that both the experimentalteff and the ratio
drpe /dr` in the vapor phase decrease asDr̄ decreases.
Hence there must be a correlation between the large ratio
drpe /dr` and the longt eff from experiments, both quite
different from the predictions, for the isotherm of
e52131022 as well as for the critical isochore as was
described before.

2. The isotherm ofe52331024

In Fig. 16 we show the computed relaxation times from
simulations fore52331024. Here the meniscus disappears
at the top and bottom boundaries at aboutuDr̄u50.078. The
discontinuity both in theteff and thet at this value ofDr̄ is
an important indication that the existence of the meniscus is
the bottleneck of the equilibration. In the absence of a me-
niscus in the cell, the equilibration proceeds much faster than
in its presence and the asymptotict agrees well withtest

FIG. 14. Amplitude ratiodrpe /dr` in the vapor phase from
experiments as a function of average densityDr̄ along the isotherm
e52131022. Inset: schematic temporal profile with the ampli-
tudes ofdrpe defines the symbols for the first peak~No. 1, open
squares! and the minimum~No. 2, solid circles!.

FIG. 15. ~a! Meniscus location, calculated from Eq.~ 14!, versus
Dr̄. The dashed lines indicate the physical location of the bottom
sensor with the distance between the dashed lines representing the
finite sampling width of the sensor.~b! Reduced density measured
by the two sensors vsDr̄. ~c! The effective relaxation timesteff
along the isotherm ofe52131022, determined from the top and
bottom sensors versusDr̄. Solid circles, bottom sensor; open
squares, top sensor.

FIG. 16. Computed relaxation times from the simulations along
the isotherm ofe52331024. The two phases coexist in the cell
over uDr̄u,0.078. ForDr̄.20.04 the bottom sensor samples the
liquid phase. The same holds for the top sensor atDr̄.0.04. The
symbols1 and 3 are teff obtained from the simulated density
transients at the top and bottom sensors as explained in the text.
Solid circles, asymptotic timet obtained from the simulations, open
circles, relaxation timetest from Eq. ~16! under normal gravity.
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from Eq. ~16! with A54, which is for equilibration at con-
stant total volume. In the presence of the meniscus,t is
larger thantest by a factor of about 4, as if equilibration
proceeded at constant pressure, namely, withA51 in Eq.
~16!, though the total volume remains constant, as we al-
ready discussed in Sec. V A 3.

As the average fluid densityDr̄ is changed and the equili-
bration location of the meniscus is moved vertically across
the cell, the effective relaxation timesteff at the two sensor
locations are strongly affected by the proximity of the me-
niscus. This is the result of the interplay of the thermal dif-
fusion in the bulk fluid and the diffusing boundary layer at
the meniscus, which operates very much in the same manner
as near the boundary of the cell. Thus the density transient
appears accelerated, generating a smallerteff , as evidenced
by sharp minima inteff vs Dr̄.

Figure 17 shows the experimentalteff versusDr̄ for the
isotherm ofe52331024. Here the meniscus position is
more sensitive to changes ofDr̄ than ate52131022: over
the density range covered in our series of experiments, upon
decreasingDr̄ the meniscus enters the cell at the top, passes
the location of both the top and the bottom sensor, and leaves
the cell at the lower cell boundary. Therefore simulations
predict dramatic changes of the relaxation times. The mea-
sured temporal density profiles at both sensors indicate dis-
continuities inteff at the appearance of the meniscus in the
cell and its disappearance and a sharp anomaly as the menis-
cus approaches and then passes each respective sensor loca-

tion. The agreement in the overall behavior ofteff vs Dr
between the experimental and the simulated results along
this isotherm is encouraging.

Finally, we note the good agreement between the pre-
dicted and observed meniscus positions in Figs. 17~a! and
17~b!. The disappearance of the meniscus foruDr̄u.0.078 is
marked by a departure ofDr from a near constant value, as
expected.

VI. SUMMARY

In this paper we have presented a theoretical and an ex-
perimental study of the local density changedr(z,t) inside a
two-phase pure fluid at constant volume in the region below
the liquid-vapor critical point. This study was carried out
with 3He and the experiment was performed in a flat cylin-
drical cell with two superposed density sensors. In most
cases, the top and the bottom sensors measure, respectively,
the vapor and liquid density. The experiments produce an
effective relaxation timeteff by approximating the tails of the
density transients by a simple exponential decay. Computer
simulations predict the spatial and temporal profiles of
dr(z,t), which lead to the prediction ofteff and also of the
asymptotic relaxation timet that is not often observable be-
cause of the finite signal-to-noise ratio of the apparatus.
Studies were performed along the critical isochore and two
isotherms. The principal results are as follows.

~i! The simulations show that there exists an asymptotic
relaxation timet for the entire two-phase coexisting system
even though the thermodynamic properties of each phase are
quite different. Thist is larger by a factor of the order of 4
than the estimated timetest based on the average thermal
diffusivity taken over the entire fluid sample and derived
under the assumption of constant volume. Our study of the
ratio t/test along the critical isochore and along isotherms,
both with and without stratification from gravity, indicates
that the fluid behaves as if each phase relaxes at constant
pressure, even though the total system relaxes at constant
volume.

~ii ! The simulations predict a rapid density change
drpe(t) from the piston effect within each phase in the same
direction, immediately following a temperature step change
De. The magnitude ofdrpe(t)/De varies slightly with the
reduced temperature along the critical isochore. This rapid
density change is observed experimentally in the vapor phase
but with a much larger amplitude than predicted. By contrast,
it is hardly observable in the liquid phase. We tentatively
attribute the disagreement between experiment and predic-
tion to two assumptions made in the simulation:~a! There is
no meniscus motion in the acoustic time regime and~b! the
meniscus temperature is solely determined by the saturation
vapor pressure at any time.

~iii ! For ueu.131023, the vapor appears to equilibrate
more slowly than the liquid. This leads to theteff~liquid! to
be shorter thant eff~vapor!. The simulated spatial and tem-
poral profiles reveal the causes of the puzzle and show that
the diffusing boundary layers have a stronger impact on the
density equilibration in the interior of the liquid phase than
in the vapor. The observedteff reflects these dynamics. Be-
cause the density detector has a finite resolution, it cannot

FIG. 17. ~a! Meniscus location, calculated from Eq.~ 14!, versus
Dr̄ along the isotherme52331024. The dashed lines indicate the
physical locations of the sensors with the distance between the
dashed lines representing the finite sampling width of the sensors.
The region of 0,zm,1 identifies the regime of coexisting phases.
~b! Experimental reduced density measured by the two sensors vs
Dr̄. ~c! Observed effective relaxation timesteff determined from
the top and bottom sensors versusDr̄. Solid circles, bottom sensor;
open squares, top sensor. The solid and dashed lines are guides to
the eyes.
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resolve the very small density variation in the asymptotic
regime.

~iv! The simulation shows that along the critical isochore
both theteff andt first diverge asTc is approached and then
roll over to a constant value because of fluid stratification in
the cell. The behavior of the experimentalteff~liquid! agrees
qualitatively with the isochore simulation. By contrast, when
Tc is approached fromueu50.1, teff~vapor! first decreases
and then increases until it levels off.

~v! The simulations and experiments along two isotherms
give insight into the equilibration processes as a function of
average density over the range of20.15,Dr̄,0.15. By
changing theDr̄, the meniscus positionzm is made to vary
through the cell, passing one or both sensors and finally
reaching the cell boundary. This leads to striking changes in
the experimental and simulated relaxation times. Especially
when the meniscus moves out of the cell boundary, the sys-
tem equilibrates much faster, indicating that at times of the
order of t the thermal equilibration changes from a ‘‘con-
stant pressure’’ to a ‘‘constant volume’’ condition.

~vi! Simulations of the density changes under micrograv-
ity conditions show thatteff and t continue to diverge in-
stead of leveling off asTc is approached.

The disagreements for the vapor phase, both in the tem-
poral profile and indr(vapor,t) and int eff~vapor! between
the experiment and prediction in particular for
ueu.131023 are not understood. Some plausible sugges-
tions have been advanced and possible shortcomings in
theory were pointed out. New experimental data that we ex-
pect to take with a cell of simpler, more ideal geometry and
insulated side walls might give a more favorable comparison
with the 1D simulations.
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APPENDIX A: FLOW VELOCITY AND CONVECTION

In presence of gravity, the possible onset of convection
needs to be considered. As shown in Fig. 3 of@6# for
DT.0 in the intermediate regime for timest.t1 , the bot-
tom half of the cell has a negative spatial density gradient,
which renders this portion of the fluid mechanically unstable,
and should start convection, while the top half of the fluid is
stable. Conversely, for an inverted step2DT, it is the top
portion of the cell that becomes mechanically unstable.

A calculation of the convective motion is not possible in
the simulation of both the present paper and a previous one
@6# because the numerical solution is sought only in one
dimension. It is argued that convection effects must be small
on the basis of experimental data: When the temperature step
DT was inverted, nearly the same temporal profiler(t) was
observed at two superposed locations where the density was

sampled. Also it is argued that fort.t1 the remaining tem-
perature gradients in the fluid under the experimental condi-
tions were well below that for convection onset.

Zappoli and co-workers@16# have carried out a detailed
numerical calculation of mass transport in a square cavity
filled with fluid CO2 at e5331023. In their 2D geometry,
the temperature of one vertical boundary is changed byDT
while the three other sides are thermally insulated. The com-
putations showed the signature of the piston effect over a
time of the order oft1 during which large density gradients
and a vertical buoyant velocity component develop at the
boundary. This vertical buoyant velocity drives the bulk mo-
tion by viscous coupling and does not change significantly
the thermal structure of the boundary layer, thus the piston
effect is almost convection independent. In the following
slow equilibration phase, which in the absence of convection
should have a relaxation time of order oft, a convective
motion develops under gravity out of the large density gra-
dients left by the piston effect and relaxed slowly with dif-
fusion in the quasi isothermal portion of the fluid. This con-
vective motion shortens the effective relaxation time and its
intensity decreases slowly in a time of the order oft. There-
fore Zappoliet al. conclude that in a fluid near the critical
point, thermal and mass equilibration processes are nearly
uncoupled and the piston effect is responsible for 85% of the
temperature equilibration in a short time scale, while convec-
tion and diffusion homogenize the density on a much longer
time scale. The detailed calculations on how much the den-
sity equilibration is shortened by the quasi steady isothermal
critical convection have not yet been performed@20#.

Even though the geometry used in the calculation of@16#
is different from that used in@6#, where the heating of the flat
cell was from all the directions, their general conclusions
should still apply to our experiments on3He. It is therefore
of great interest to find out whether the discrepancy between
the predicted and observed time constants in the3He experi-
ments is the result of convection, in spite of the argument
made on the reversible temporal density profiles for tempera-
ture steps in opposite directions.

APPENDIX B: NUMERICAL PROCEDURES

The coupled equations for temperature, pressure, and den-
sity are solved through iteration. The detailed iteration pro-
cedure to update the solution fromnth time to (n11)th time
is as follows.

~i! Estimate]P/]t and]zm8 /]t from their respective tem-
poral histories, where the subscriptm is for ‘‘meniscus.’’

~ii ! Calculate

P0
~n11!5P0

~n!1~]P/]t !dt, ~B1a!

zm8
~n11!5zm8

~n!1~]zm8 /]t !dt, ~B1b!

Pm
~n11!5P0

~n11!1gzm8
~n11!. ~B1c!

~iii ! CalculateTm
(n11) from Pm

(n11) , assuming that the
temperature at the meniscus is solely determined by the satu-
ration vapor pressure linePsat5 f (T).
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~iv! Solve Eq.~5! for the temperature distribution at the
(n11)th time in each phase separately, using the implicit
scheme, the known boundary temperatures, and the latest
available]P/]t.

~v! Calculate]zm8 /]t from Eq. ~12! using the temperature
distribution, latent heat, density, and conductivity at the
(n11)th time. Updatezm8

(n11) andPm
(n11) using Eq.~B1!.

~vi! Calculate the density distributionr(z8,t) from the
equation of state using the temperatureT(z8,t) and pressure
P(z8,t) distributions at the (n11)th time, following which
the static and dynamic coefficients are updated.

~vii ! Reevaluate the distribution of the grid points in the
laboratory coordinate$z% from

z5E
0

z8 dz9

r~z9,t !
, ~B2!

especially

hcal5E
0

z8m
~n11!dz8

rvap
1E

z8m
~n11!

M dz8

r liq
. ~B3!

~viii ! If the absolute value ofD f[(hcal2h) is smaller
than a preset tolerance, the iteration is stopped. Otherwise
]P/]t is corrected using the Newton method with the deriva-
tive constructed of the last and current]P/]t andD f in the
iteration. Then the iteration is repeated from step~ii !.

The objective of the iteration is to seek a unique]P/]t
while the temperature and pressure distributions affected by
the ]P/]t will generate the density distribution that main-
tains the total volume unchanged at the (n11)th time. Usu-
ally no more than five iterations are needed for the tolerance
of 1310214. The calculated average density over the cell is
within 1310212 of the known value. Then the temperature,
pressure, and density at fixed spatial locations are interpo-
lated from their respective distributions for use in computing
the temporal profiles.

We estimate the initial]P/]t via the heat input at two
boundaries, which in turn can be approximated by the spatial
derivative of the error function, the simplest solution to the
1D temperature distribution; thus

S ]P

]t D
guess

;2K S ]P

]T D
r

L lb

^rCV&

DT

hAp~DT!bdt
. ~B4!

This initial guess gives a value of]P/]t that is usually
within a factor of 3 from the final]P/]t after iterations.

APPENDIX C: MENISCUS MOTION

We now discuss the motion of the meniscus under the
conditions ofDr̄50, e52131022, and a positive tempera-
ture stepDe5131024. Figure 18~a! shows the motion of
the meniscus as a function of time. During the early transient
when the pressure change rate is high, the vapor phase is
compressed more than the liquid, therefore the vapor volume
is reduced (dzm,0). After the pressure increase fades out

and the temperature change rates are comparable in each
phase (t;500 s!, the vapor volume starts to increase
(]zm /]t.0) due to the larger thermal expansion coefficient
in the vapor; the meniscus moves backward to its initial lo-
cation, as we have expected forDr̄50.

Coupled with the meniscus motion is the mass crossing
the meniscus. Because of the sharp pressure increase during
the early stage, the fluid in the vapor phase near the meniscus
is compressed into liquid, producing a heat source (Ql.0)
and accelerating the temperature increase at the meniscus.
Once the thermal diffusion plays a major role in the equili-
bration, the mass crossing can reverse its direction towards
the final equilibrium density distribution, as we have dis-
cussed in Sec. II. Then the meniscus becomes a heat sink
(Ql,0). In Fig. 18~b! we show the dimensionless heat pro-
duced per secondQl(t) at the interface as a function of time.
As the result of the competition between the two processes,
the total dynamic heat calculated from the integration of
Ql(t) over t is about three times smaller than the static one
calculated from the latent heat multiplied by the total mass
conversion.

We have observed in the experiment a sharp and large
density response following a positiveDe step when the me-
niscus is inside or very close to a density sensor. As we can
see from Fig. 18, when the meniscus moves rapidly towards
the top boundary (dzm,0), some vapor leaves and some
liquid enters the density sensor, leading to a sharp rise of the
measured density. Depending onDr̄, the meniscus can re-
verse its direction of motion, as seen from Fig. 18, with a
corresponding fall of the measured density. The magnitude
of the sharp density response is much larger than what could
be accounted for by the piston effect on the density change in
the interior fluid of each phase.

FIG. 18. Simulated temporal profiles of interface motion
dzm(t) scaled byh ~top! and the total heatQl(t) generated at the
meniscus ~bottom! for three values of the average density
Dr̄520.10, 0, and 0.10 ate52131022, De5131024, and
under normal gravity.
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